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Thermal fluctuations of fluid membranes in multilamellar systems have been extensively studied during the
past decade by means of nuclear spin relaxation. Such data have generally been analyzed in terms of an
effectively two-dimensional membrane model, which does not properly incorporate the mutual coupling of the
individual membranes. Here we present a comprehensive theory of spin relaxation induced by small-amplitude,
long-wavelength elastic distortions in a multilamellar stack of fluid membranes. In contrast to previous theo-
retical treatments, we find that membrane coupling can profoundly affect the spin relaxation behavior via its
effect on the amplitudes and rates of membrane distortion modes. A physical basis for the resulting, rather
intricate, spin relaxation behavior is provided by analyzing the spatial correlation function for the local mem-
brane orientation. We find that the decay of this function involves two correlation lengths: one is related to
interactions with the two adjacent membranes, and the other reflects the coherent fluctuation modes in the
entire membrane stack. This analysis explains why the time correlation function has the asymptotic form
1/72 rather than 1, as expected for a two-dimensional system. A reinterpretation of existing low-frequency
spin relaxation data from multilamellar phospholipid-water dispersions in terms of our theory should provide
valuable insights into the nature of intermembrane fort8%063-651X%97)03707-0

PACS numbgs): 68.10—m, 61.30.Gd, 76.60.Es, 87.22.Bt

[. INTRODUCTION systems published to date have been interpreted in terms of a
simple 1t dispersion law. This dispersion law was first de-
Thermal fluctuations profoundly influence the static andrived by Blincet al. in connection with spin relaxation stud-
dynamic properties of any unidimensionally periodic struc-ies of a thermotropic smectig-phase, for which it was con-
ture [1]. Since the pioneering work of Helfrick2], thermal  cluded that undulation modes do not contribute significantly
out-of-plane fluctuations of fluid membranes in multilamellarto the measured relaxation dispersjdg]. With multilamel-
assemblies have been widely studig84]. Much of this lar fluid membrane systems in mind, Marqusee, Warner, and
work has focused on phospholipid membranes and the bimill later rederived the 14 law, obtaining a different pref-
logical implications of membrane fluctuations. For the eX-actor[19]. Although this derivation is based on the undula-
perimentalist, thermally induced membrane undulations protion mode spectrum of a free membrane, it has been exten-
vide a handle on two important microscopic properties: thesjyely applied to multilamellar systems under the assumption
bending _rigidity of the membrar_1e and the intermembrangnat membrane coupling can be ignofdd].
force, which both affect the amplitude and rate of membrane thg extant theoretical treatments of the adiabatic spectral

undulations. density that governs transverse spin relaxation are also based

The technique of nuclear spin relaxat|on_|s arguably .theon the undulation mode spectrum of a free membrane, but
most powerful probe of membrane undulations in multila-

. . . differ in the dispersion relation adopted for the mode decay
mellar systems. The spin relaxation rate is governed by ori- > . .
entational correlations, and therefore reflects the spatial anr&l_te[ll,Z(]. Stohreret al.[11] used theqi_d|sper3|on.appro—
temporal variation of thermally induced membrane curvaPriate for a purely transverse undulation modg is the
ture. While the static nuclear magnetic resonance line shag@agnitude of a wavevector in the membrane plaBtoom
from a lamellar phase depends on the orientational fluctuzand Evang20] advocated either a free-membrayiedisper-
tions of the membrand$], the adiabatic relaxation rate de- sion or a “red-blood-cell”qf dispersion appropriate for a
pends on their positional fluctuatiof§]. The orientational pair of membranes fluctuating under the constraint of con-
fluctuations are governed by relatively short-wavelength unstant enclosed volum@1]. These three dispersion relations
dulation modes, and therefore mainly provide informationdiffer solely in the way hydrodynamic interaction is taken
about the bending rigidity. The positional fluctuations areinto account. All of them ignore direct membrane coupling.
influenced by long-wavelength modes and therefore also deFo avoid divergences in these treatments, the elastic mode
pend on the spatial variation of the intermembrane force. Thepectrum must be truncated. This transverse cutoff length has
intriguing possibility of using nuclear spin relaxation to been variously referred to as “a long-wavelength cutoff for
study intermembrane forces has only recently been recoghe elastic modes'{of unspecified physical origff11-13,
nized[6]. a magnetic coherence lendth¥], or an effective correlation
Spin relaxation rates from multilamellar fluid membranelength for membrane undulatiofi20].
systems have been determined over a wide frequency range In a recent, more rigorous treatment of spin relaxation in
using field-cycling[7—9] or pulse-train10—14 techniques, multilamellar system§6], membrane coupling was incorpo-
and at zero frequency using transverse relaxaftidh-17). rated at the ouset in the elastic Hamilton{@2]. The adia-
All frequency-dependent relaxation data from multilamellarbatic spectral density differs qualitatively from previous re-
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sults 11,20, and there is no need for a transverse cutoff.torque radically changes the fluctuations of a free membrane,
Moreover, while a 1b dispersion regime also emerges from it is strongly opposed by membrane coupling in a multila-
the coupled theory, it occurs well above the experimentamellar system. For practical purposes, the magnetic-field ef-
frequency window. Since the experimental relaxation disperfect onJ(w) can therefore often be ignored, and is not likely
sions do exhibit a 14 regime, they might seem to contradict to be responsible for the low-frequency platead(w) [33].
the coupled theory. As stressed in previous wi@dk how-  This situation may be contrasted with that in nematic phases,
ever, the mode dispersion was taken to be ofqﬁe‘orm. where the magnetic field plays a more importance role due to
The results in Ref[6] are therefore strictly valid only when the longer range (1) of the orientational correlation2]
molecular diffusion along the membrane is much faster thamnd the absence of a compressional restoring force. Not only
membrane undulation. In the opposite lirtéind in the gen-  does the external magnetic field influence the adiabatic spec-
eral casg it is necessary to take membrane coupling intogg] density J(0), it can also break the symmetry of a
account not only i_n the static mode spectrum, but also in thgpiaxial nematic phase, modifying the orientation depen-
dynamics of elastic mod¢22,23. _ _dence of the spin relaxation ratg4].

In this work, we present a comprehensive theory of Spin 1 time correlation functiots(7) reflects temporal fluc-
relaxation induced by small-amplitude, long-wavelengthy a4ong of the local membrane orientation at the location of

elastic distortions in a multilamellar stack of fluid mem- .o spin-bearing molecule. These fluctuations can result from

branes, a relaxation mechanism referred to in the literature . .
: . . FRolecular self-diffusion along the curved membrane or from
order director fluctuations or membrane undulations. The

present theory differs from previous treatments of the Sammembrane undulation dynamics. In Sec. VI, we discuss these

AR : > SaMy o processes. Membrane coupling has a profound effect on
problem primarily in that we include membrane coupling in both static and dynamic aspects of the elastic distortions in a

a consistent way in the static as well as dynamic propertieﬁame”ar hase. The static effect is due to the spatial con-
Although the underlying continuum description of the elastic , .~ ™. P ; . ) P .
gtramt imposed by intermembrane repulsion on the ampli-

distortions and the hydrodynamics of a lamellar phase restt . : !

. ; . e ude of membrane fluctuations. The dynamic effect, which
on a firm foundation22], the mvolvgmgnt of six dISth.t may be even more important, arises be%:ause membrane cou-
length scales makes the problem intricate and sometlmeaing induces coherent displacement fluctuations in the mem-

subtle. . :
The outline and principal results of the paper are as fol_brane stac22,23. Since these coherent fluctuations are

lows. Section Il serves to establish a convenient notation 1‘orrnUCh slower than purely _transyerse membrane undulation
odes, they produce a dispersion Jfw) at much lower

the subsequent development, and to make explicit the con- : : )
nection between the experimental observables and the cent é?f#]enc'.es _thaln in tTe a?si_nce ofkmembrane_ co(tjjpllng.
objects of the theory, the orientational time correlation func-vII ar? dR;IITICI\?vierris\ljv:asccjelléullzt;vct)rr\e E:iﬁecggifgl]aetio:qn fur?((::-s.
tion G(7), and the corresponding spectral density functiont. G ,d tral density funci In Sec. VI
J(w). Since the theory is restricted to the harmonic regime'on ; (7) an spectral density func '0].(“’)'. nSec. Vil we
of small fluctuations, we consider only the correlation funC_con5|der the limit where molecular diffusion is much faster

tion that is of second order in the membrane displacemer;[{1an membrane undulation. This limit is at least approxi-

radient mately realized for mobile counterions in oil-swollen dilute
9 Havin'g introduced the two elastic modulii that govern lamellar phase$5]. Since it admits a fully analytical treat-

: . ment, this limiting case is also of considerable heuristic
memprane fluctuatlpns n a Iamellar ph&Sec. b, we con value, providing physical insights not so easily gleaned from
sider in some Qeta|l the spa_t|al correlation functién(r. ) a numerical treatment. While the spectral dend{ty) in the
f(or the\c/))rlentatlon of the projected local membrane normal%ast-diffusion limit was presented in a preliminary regi,
Sec. V). The relative importance of bending rigidity and S o
membrane coupling is gauged by the so-called patch lengt he presentation in Sec. VII goes further by considering also

&k, which emerges naturally from the free energy of elastic 2 ggac?g;ieclzztg)cnafug(tlc;rﬁ?é:)ﬁ.nil:le Z?lglciﬂ%ri'tewse :éarlrt'\es
deformation of a multilamellar assembly, but does not appeattlh ympto y auiT ; . y
o the peculiar behavior of the orientational correlation func-

in the single-membrane approach. First implicit in the Worktion H,(r,). We also show that the a/ dispersion law

of Helfrich on steric interactions in multilamellar systems 181 f | f ) S wh 1S
[24,25, the patch length defines the crossover from a short:18:19 applies only at frequencies>wy , where liy sets

wavelength regime with independent membrane fluctuationd® tlmezscale for diffusion out of the initial membrane patch
to a long-wavelength regime with coupled fluctuati¢as— of areaéy, where membrane coupling is not manifested.
29]. It is then natural to assume thdt (r,) decays more or In_ Seg. VIII, we treat the general case Whe_zre both molecu-
less exponentially on the scale &f [26]. We find, however, lar diffusion a_nd membrane_ undulat_|on contribute to the tem-
that whileH , (r,) has indeed decayed to zerarat= & , the poraI_ fluctuations. When d|ffq3|on is slow compared to un-
membrane normals remain weaklgnt) correlated over dulation, as for phospholipid membranes, the dynamic
much longer distances. Consequently, two correlatiofOUPling effect is dramatically manifested i) at low
lengths are needed to characterize the decdy,f , ). This frequenmes. An analytical result is obtained 3¢0), reveal- '
finding explains why, in the diffusion limitG(r) decays INd an extremely strong .dependergce on membrane coupling
asymptotically as I# rather than as &/ as is usually the in the slow-diffusion limit: J(0)= ¢y as compared td(0)
case for diffusion in unbounded two-dimensional systems<£x in the fast-diffusion limit. If membrane coupling is
[30-37. strong, thel(w) dispersion is essentially the same as in the
In Sec. V, we investigate the effect of an external mag-diffusion limit, with a 1k regime extending down tay,
netic field on membrane fluctuations. Whereas the magnetiwhere 1lg measures the time scale for membrane undula-
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tions of wavelengthéy . If membrane coupling is wealéy
much larger than the intermembrane spagitgpwever, the
1/w regime extends down to the diffusional frequerm&,
which is a much lower frequency when diffusion is much
slower than membrane undulation.

We believe that these results can account for the low-
frequency spin relaxation behavior in multilamellar systems
[7-17]. A detailed reanalysis of the experimental data in
terms of the present theory, deferred to a subsequent publi-
cation, should provide valuable insights into the nature of
intermembrane forces.

II. NUCLEAR SPIN RELAXATION
IN A LAMELLAR PHASE o n

A. Spectral density functions

Within the regime of the conventional second-order per-
turbation theory of nuclear spin relaxatip85], the acces-
sible information about the amplitudes and rates of the fluc-
tuations that induce spin relaxation is contained in a set o
irreducible crystal-frame spectral density functidi®$,37].

In the absence of a symmetry-breaking external figt
Sec. VD, the lamellar phase is uniaxiétrystallographic orientational fluctuation modes that, due to their small am-
point groupD..;,). There are then three irreducible spectralplitude, contribute significantly to spin relaxation only if they
density functions are much slower than the local molecular motions. Such di-
rector fluctuations are therefore important only at frequencies
c [~ c _ much lower than the conventional MHz ranid.
Jnn(@)= fo dr codwr)Gpy(7)  (n=0, 1, and 3. In field-cycling relaxation experiments, all three lab-
(2. frame spectral density functioﬂ#k(wk ; B) provide informa-
o ) ) ) ) tion about director fluctuations, since the probing frequency
The corresponding irreducible time correlation functions are,, can be varied over a wide range, down-d kHz [40].
[35-37 At conventional Larmor frequencigdIHz range, director
c. .\ fluctuations contribute only to the secular lab-frame spectral
Grn(7)=(C2nl 6(0), (0)]C5,[ 6(7), ¢(7)]) density functiotho(w;,B), which is probed at zero fre-
— 6n0( P2(c0%9))?, (2.2 quency by the transverse relaxation rdte the homoge-
neous linewidth and in the kHz range by pulse-train experi-
where the arguments of th@nnormalized spherical har- ments. In particular, the Carr-Purcell-Meiboom-Gill spin-
monics C,,(6,¢) specify the instantaneous orientation of echo experiment measures an effective spectral density
the major principal axis of the spin-lattice coupling tensorfunction[41]
with respect to a crystal-fixed fram@vith the z axis along "
the optic axis of the lamellar phase oL )

The observable spin relaxation rates can usually be ex- ‘]CP’V'G ©:B)= 2 (2p+1)"Jod (2p+ 1) mel2, 5],
pressed as linear combinations of the crystal-frame spectral (2.9
densities in Eq(2.1). For a uniaxial phasg37],

FIG. 1. A patch of membrane, showing the definitions of the
irectorn, its projectionn, on thex-y base plane, and the anglés
and 8. Thex axis is defined so that the external magnetic field
By is in thex-z plane.

8
_2

wherew now denotes the pulse-train frequency.

2
Jh ok ;B)Inz,o (1— 6,0/2){[d2,(B)]? B. Small-amplitude director fluctuations
In the frequency range where director fluctuations con-
+[d2_(B) 23S (@), (2.3) tribute significantly to spin relaxation, the much faster local

motions are manifested as a frequency-independent additive

whered? () is a reduced Wigner functid8], andgis the  contribution to the crystal-frame spectral density functions.
angle between the optic axis and the external magnetic fieldrhe director fluctuation contribution is then described by Eq.
By recording the orientatiof3) dependence of the spin re- (2.2), where the angleé,¢) now specify the orientation of
laxation rates, the model-independent quantﬂl@g‘zwk) can the local membrane normal, referred to as the direcotor
be determined. with respect to the optic axigf. Fig. 1). (The faster molecu-

The dynamic processes responsible for spin relaxation ifar motions also renormalize the spin-lattice coupling con-
a lamellar phase take place on a broad timescale. Local matant, the square of which multiplies the spectral densities, as
lecular motions, such as conformational dynamics and redefined here, in the expressions for spin relaxation rates
stricted molecular reorientation, dominate the relaxation if37].)
the conventional range of Larmor frequencies R The time correlation functions in Ed2.2) may be ex-
~1-100 MHz)[39]. Here we are concerned with collective pressed in terms of the projection of the director on the
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base plandorthogonal to the optic axisas and, hence, a deflection of the directoaway from the optic
c 4 axis (0,0,7. To second order in the director fluctuation, Eqg.
Go(1)=0(n7), (253 (2.9 reduces to
GH(m=3n.(0)-n,(m)+0(n}), (25 n=—V.u. 2.10
GSA7)=0(n}). (2.50

It follows from Egs.(2.9) or (2.10 that the descriptions of
if the the motions that induce low-frequency spin relaxation in
multilamellar systems as “order director fluctuations”
(modulation ofn) or as “membrane undulations(nonuni-

If the director fluctuations are of small amplitude, i.e.,
director does not deviate much from the optic axis so tha
(n?)<1, we may neglect fourth-order and higher contribu- . . : .
tions to Eq.(2.5). Director fluctuations are then manifested form modula_tlon'ofu) are entirely equivalent. This funQa-

exclusively via the second-order time correlation functionmental duality is apparently not generally appreciated

G{y(7) and the corresponding crystal-frame spectral densit;LlA"lG’lz' Indeed, some authors treat director fluctuations
. C ) and membrane undulations as distinct relaxation mechanisms
function J7;(w). The latter contributes to the secular lab-

. . L [16]. Here we use the two expressions “director fluctuation”
frame _spectral d.ensny funct|o(!wh|ch is probed at low fre- and “membrane undulation” synonymously.

quencies according to Eq(2.3): In the present work, we adopt the conventional view that
L/, . p)— 9ci the local membrane normal defines the preferred orientation
Joo i B) = 2SI cOS B I(w), 29 of the constituent molecules. Moreover, I3/ve assume that the

Where, for notational Convenience, we defined the SecondﬂOlecular orientation relaxes to the local uniaxial equilib'

order crystal-frame spectral density function rium distribution “instantaneously” on the time scale of
membrane undulation and molecular diffusion. This is

* clearly not the case on molecular length scales, but it should

Iw)= jo d7 codwn)G(7), 2.7 pe a valid description for the long-wavelength modes that

dominate the low-frequency spin relaxation rate. Without

and the corresponding time correlation function this time-scale separation, the irreducible time correlation
functions in Eq.(2.2) would have a more complicated struc-

G(7)=(n.(0)-n,(7)). (2.8 ture, as used for describing the faster local motions respon-

sible for spin relaxation in the MHz regin{d6]. When the
buti <h h ) ) 0 and /2 d time scales are distinct, the faster motions only enter as a
contribution vanishes at the orientatiois-0 and/2, and 516y lar order parameter, the square of which multiplies all

goes_through a maximum gt= /4. At the f_Of”?er two ori-_ spectral densities in the final expressions for the relaxation
entations, therefore, the fourth-order contributions come '”t‘?ates.

According to Eq.(2.6), the second-order director fluctuation

play. These are treated elsewhp4e]. In lyotropic liquid crystals, the hydrophobically self-
assembled amphiphilic aggregates introduce a supermolecu-
C. Director fluctuations versus membrane undulations lar level of structural organization, allowing long-wavelength
In a continuum description, the configurational state of afluctuations to be described in terms of interface geometry.
uniaxial phase can be specified by a unit vector field), In molecular thermotropic liquid crystals this supermolecular

giving at each point in space the orientation of the directofevel is absent, and the directorrefers to a molecule-fixed
with respect to the Optic axis. This is the conventional de_aXiS rather than to the local interface normal. The order di-
scription for nematic phasd®2,43. For lamellar phases, rector fluctuation mechanism discussed for the molecular
however, the configurational state is more naturally desmecticA phase[18,47,4§ is therefore distinct from that
scribed in terms of a scalar fielo(r) (cf. Fig. 1), giving at considered here. In fact, the same viscoelastic continuum de-
each point the verticalalong the optic axismembrane dis- Scription has been used for molecular smegtiand nematic
p|acement away from a reference p|a(1he base p|ar)e phasei47—4q. A different continuum description has been
[22,44). The displacement fieldi(r) uniquely specifies a €mployed near thésecond-order phase transition where
given thermally excited configuration of the multilamellar critical fluctuations couple smectic and molecular order
assembly with respect to the “zero-temperature” ground50,51. Such critical phenomena are not expected to be im-
state of equidistant, flat membranas<(0). portant in lyotropic systems, where the lamellar to nematic
As long as the membranes are free from overhangs, sBhase transition is generally first order.
that a given membrane surface can be specified in the Monge
representatioz=u(x,y), there is a unique one-to-one cor- D. Orientational structure factor
respondence between the director and displacement fields

[45] For a system of macroscopic but finite volurive the

displacement fieldi(r) can be developed in a Fourier series
(-V,ul) as
n—(m,nz)—wy (2.9 )
. _ u(r)=2 u(q)exp(ig-r), (2.119
whereV | =(d/dx,dl dy) is the transverse gradient operator. q
This exact relationship reflects the fact that a nonuniform
displacement of a membrane necessarily induces curvatumgith (complex-valuegreciprocal-space mode amplitudes
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membrane undulation molecular diffusion whereby
4 4
S — G(T)=§ a2(4(9,00* (0,7)c
TEE - IETTC M P X —iqg- - . .
A A I (exp—ia-[r()-r(0)]})s. (216
p— I The last factor in Eq(2.16) can be identified with the spatial
&7 . # L Fourier transform,F¢(q,7), of the single-particle transla-
tional diffusion propagatoF(r,7), i.e.,
space space Fs(a,7)=(exd —iq-r(7)])s
1
FIG. 2. Schemaitic illustration of the two dynamic processes that =— f dr Fg(r,7)exp(—ig-r). (2.17
modulate the orientation of the membrane directqarrows in a \4

lamellar phase: membrane undulation at a fixed positieft) and . .

molecular diffusion on a frozen membrafréght). Note that we can set(0)=0 in Eq. (2.16 without loss of
generality, since the system is translationally invarigait
initial positions are statistically equivalerin length scales

i(q)= l f dr u(r)exp(—iq-r). (2.11b where the continuum description holds. Furthermore, we in-
v troduce thgnormalized membrane displacement correlation
Using Egs.(2.10 and(2.113, we can similarly expand the function
director field as Fe(a,n)=(0(q,00% (. D) K[ De, (218
n (n=—i>, q,a(q)expiq-r), (2.12  and the orientational structure factor
q H(@)=a?(|(@))c. (2.19

with g, =(dy,qy) the transverse wave vector.
The time correlation functioG(7) in Eq. (2.8) reflects  which is the Fourier transform of the spatial orientational
temporal fluctuations of the director orientation experiencedtorrelation function,
by the spin-bearing molecule. Two distinct dynamic pro-
cesses can contribute to the time dependence, 6f) (cf. - .
Fig. 2. A molecule that remains at a fixed positiorexpe- H(r)=(nL(O)-nL(r)>C=§ H(g)exp(iq-r). (2.20
riences a time-dependent director due to thermally excited
elastic distortions in the medium. If, on the other hand, the Combining Egs.(2.16—(2.19, we can express the time
elastic distortions are frozen in, the molecule will still expe- correlation functionG(7) on the compact form
rience a time-dependent director due to its self-diffusion
through the quenched director field. These two limiting cases -
correspond to an explicit time dependencgr,7) and an G(T):Eq: H(a)F(a,7), (2.2
implicit time dependence, (r(7)), respectively. In general,
both processes take place simultaneousiy, Ifis regarded  with
as a function ofr, its Fourier decomposition should therefore
be written F(g,7)=Fc(q,7)F<(d,7). (2.22

. ~ . The spectral density function in E¢R.7) then becomes
n(9=-i% al@nediar]. (213 P v @7

Inserting Eq.(2.13) into Eq. (2.8), we obtain ‘J(“’)qu: H(a)S(q,w), (2.23
_ yr Nk where S(g,w) is the (normalized dynamic orientational
e % qz - A {U@0u(a’ D)e structure factof52,53

X(expli[q-r(0)—q"-r(n)]})s. (214

Here we assumed that collective elastic distortio@3$ and
molecular self-diffusion §) are independent processgs.
Sec. VI A), so that statisticalensemblg averaging can be Ill. ELASTIC DISTORTIONS IN A LAMELLAR PHASE
performed separately for each process. Next, we note that
coupling of differentg modes can be neglected in a macro-
scopic systeni22), i.e., The phenomenological description of thermally excited
elastic distortions in a lamellar phase, first developed for the

(0(q,000% (9", 7))c= 84,¢(0(9,000* (0,7))c, (2.15  smecticA phase[22], is based on the energy functional

S(q,w)Zf d7 cofwr)F(q,7). (2.29

A. Free energy of elastic distortion
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transverse undulation ongitudinal compression The first term in Eq(3.2) is the Helfrich-Canham bending

q q energy of a defect-free, symmetric bilayer membrane
[56,57, with « the bending rigidity andH; the mean curva-
ture of theith membrang45],

Hi=-V,-n,;=V2u;+O[(V_ u)?], (3.3

where Eq.(2.9) was used in the last step.
The second term in Eq3.2) is the(free) energy of inter-

FIG. 3. The fundamental elastic distortion modes in a Iamellar":lCtIon per unit base area of two adjacent membranes with

phase: the transverse undulation mode and the longitudinal conﬂocab separatiors, relative to their interaction at the aver-

pression mode. For transverse wavelengtis Shorter thang,, ~ 2J€ membrane spacind (the lamellar repeat distance
the modes are incoherent, whereas, for longer wavelengths, there (@nly nearest-neighbor interactions in the stack are in-
a phase coherence between the membranes in the stack. cluded) Since the separation between membranesd i

+1 iss;=d+u;;;—U;, w(s;) may be expanded aroursj

=d as
, (BY

2
Aurn=4 [ arkvtu+e] 7

whereV? = ¢%/9x?+ 9%/ 9y? is the transverse Laplacian and +O([uj1—ui13). (3.4

the integration is over the system volude This harmonic _ . . _ :
approximation is valid for weak fluctuations in the sense thafrhe_ linear term vanishes since, by definitions) is at a
|Vu|2=|V, u|?+ (dul9z)?<1. Equation(3.1) thus describes Minimum fors=d. _ . .
distortion modes of sufficiently long wavelengths that the _ 1€ membrane is treated as an incompressible fluid layer
membranes are only slightly tilted from the base plane an@f fixed thickness. The tptal membrane area in the sample is
the spacing between successive pairs of membranes diffefdn @ conserved quantity, unaffected by membrane undula-
only slightly. tions. The effect of shape fluctuations is simply to reduce the

The lamellar phase is characterized by two macroscopi@UMPer of membranes in the sample, thereby increasing the
elastic modulii: K, is associated with director splagpr ~ Mmean membrane spaciug[4,5]. If membrane compression

membrane bendingndB with longitudinal(along the optic }[’;f;aeca:og\rl]ee%fgéf’ré%homd be supplemented with an in-
axis) compression at constant chemical potential. The funda- Inserting the leading contributions of Eq8.3) and (3.4)

mental distortion modes associated with these elastic moduljj : ; o .

. A : : into Eq. (3.2 and passing to the continuum limit, with
are illustrated in Fig. 3. Since the pure compression mod Uisq—U)/d—duldz and d3;— [dz, we recover the har-
does not introduce membrane curvature, it cannot affect the ' 1 ~i ! ’

orientational correlation functions considered here. A generatrlnomc continuum Hamiltonian, Eq3.1), with the identifica-

W(s) —w(d) =w' () 41— U]+ 3w () [u;, — U

mode, however, is a mixture of the two fundamental modes. "> [58]
The first term in Eq(3.1) is the harmonic approximation to K,=«/d, (3.5
the splay termK,(V-n)? in the Oseen-Frank elastic free
energy[43]. For a defect-free lamellar phase, the twist term B_de’(d). (3.6
vanishes identically, while thédirecto) bend term intro-
duces a coupling between the two terms in E31), albeit
of negligible magnitudés4]. IV. ORIENTATIONAL CORRELATIONS
To preserve full rotational invariancéu/dz should actu- IN A LAMELLAR PHASE
ally be replaced byu/dz— 3|V, u|? in Eq. (3.1). One effect A. Transverse orientational correlations

of this anharmonic correction is to renormalize the elastic
modulii K; andB [22,55. For a lamellar phase in the har-
monic regime, however, the elastic modulii are thus altere
by at most a few percent.

With the aid of Eq.(2.113, the harmonic free-energy
éunctional (3.1 may be Fourier decomposed [&&!]

A{O@N=3V (Kt +Bapfi(@f® @D
B. Microscopic interpretation of elastic modulii
To relate the elastic modulk andB in the continuum S_ince th(’f’ fre_e_energy is a sum of quadratic terms, the clas-
é;lcal equipartition theorem tells us that the statistical average

description to microscopic structure and interactions, on ¢ ht k.T/2. The orientational structure fact
notes that a lamellar phase is a stack of many discrete melg- each term equalsg [/<. 1he orientational structure tactor
i

branes. The configurational free energy of this system i&d- (2:19 thus becomep4]

taken to be of the form 2
- kgT ar
H(q)=—-

f=2i fer{%KHi"'[W(Si)_W(d)]}, (3.2 \ KlQiﬂLaﬁ.

The real-space orientational correlation functidr) can
wherer, =(x,y), and the sum is taken over all membranesnow be calculated by inserting E@t.2) into Eq.(2.16. We
in the stack. shall be mainly interested in the transverse orientational cor-

4.2
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relation functionH, (r;) and the transverse orientational elastic free energy for a distortion mode of wave vectds

structure factoH, (q,). These are interrelated through proportional toK,q?+BqgZ. For wave vectors such that
K.q?>Bq? for all g, within the rangen/L,<|q,|<=/d,
H.(r )= » exo(id, -1)). 43 i.e., whenq, >1/¢¢, we have essentia}ly pure undulation
(1) % +(Q)expiq,-r,) “.3 modes, unaffected by membrane coupling. For wave vectors

_ _ such thatk ,q? <Bgq? for all q,, i.e., whenq, <1/¢g, we
The transverse functions are related to their threenaye essentially pure compression modes, which do not in-
dimensional counterparts as duce membrane curvature. The correlation lengthsand
_ &g thus partition the transverse wavelength range into three
HL(r)=H(y.0), (4.4 regimes (cf. Fig. 3: an uncoupled, incoherent, short-
L wavelength regime (f)f <£&k), a coupled, intermediate-
H (q,)= 2_2 J dg,H(q). (4.5  wavelength regime with phase coherence between the differ-
™ ent membranes in the stack(<1/q, <&g), and a long-
. , , . wavelength compressional regime 1% &g).
h TBe |nteg|;rat|on r;;1ge<s a sgac/edarela-r/ LL?qi$7/ am The correlation lengttix was first introduced within the
tr? lase plane an LZ\|qu|f\7Tﬂ ao[:g ;.91 optic axlls'h context of sterically interacting membrangt—26, where
The low-wave-number cutoffs reflect the finite size of thej; .o pe I0osely interpreted as the average distance between
sample(or homeotropic domajnof width L, and thickness ,intg of contact between adjacent membranes. In contrast to
L,. The high-wave-number cutoffs acknowledge the breaky,qo positional correlation functiofu(O)u(r)) and the asso-

down of the continuum description on length scales compagjateq positional structure factor probed by scattering experi-
rable to the molecular width and the mean membrane spac- ments [59-62, the orientational correlation function
ing d. . _ _ (n, (0)-n,(r)) probed by nuclear spin relaxation has appar-
_ Converting the sum in Eq4.3) to an integral oveq, and  gnyjy not been examined in detail previously. Presumably for
integrating over the orientation of trig vector in the base s reason, the correlation lenggl has not been identified
plane, we obtain before.
A The importance ofég for spin relaxation in lamellar
H, (r,)= > f quqlﬁL(ql)Jo(qirl), (4.6) phases is reaqlily appreciated. Sin_ce the_ fluctuation modes are
™ of small amplitude in the harmonic regime, they make sub-

ith A th | h h | stantial contributions to spin relaxation only if they are slow,
with A the base plane area adg(x) the zeroth-order Bessel \hich means long wavelengths. However, modes of wave-

function. Next we calculatéd, (q,) by inserting Eq.(4.2  |engths exceedingg, although slow, have vanishing orien-
into Eq. (4.5 and integrating oveq: tational amplitude since they are essentially compressional.
5 5 The correlation lengthég thus acts as a transverse cutoff,
Ték tar{ (q.é)/

|:|¢ (q,)= Ke arc S 4.7 t_)eyond Which_ no modes contril:_)ute signi_ﬁcantly to orie_nta-
wAK 1+(q° écéglm)? tional correlation functions or spin relaxation rates. Provided
that ég<<L, , the membrane sizk, is therefore irrelevant.
Substituting this result into Eq4.6), the real-space orienta- |n contrast, sincetgxL2?, the thickness of the membrane
tional correlation functionH, (r,) is obtained after a nu- stack does influence orientational fluctuations of long wave-
merical integration oveq, . lengths and at low frequencies.

B. Correlation lengths C. Orientational correlation for a free membrane

In Eqg. (4.7), we introduced two transverse correlation |, the free-membrane IimithO), Eq.(4.8) shows that

lengthséx and &g, which characterize orientational correla- ¢ diverges, so that Eq¢4.6) and (4.7) yield [26]
tions in a lamellar phase. They are defined as '

A keT 1 keT (L,
&k=(d°K,/B)™", (4.8 HL(rL)zm dq, iJo(QJL)Zm'n —,

oy

(4.10

wherer  >al/7 was assumed in the last step. The mean-
The two correlation lengths are related througly  square director fluctuation of a free membrane is obtained by
=N, with N=L,/d the number of membranes in the settingr, =0 in the integrand of Eq4.10, with the result
stack. WithN=10%, typical for a lamellar sample oriented 2]
between glass plategg is thus two orders of magnitude
larger thané . [In deriving Eq.(4.7), we also assumed that kgT

£a=(L2K,/B)™ 4.9

N>1] Another relation is &=(AL)Y% with A (n?)=H.(0)= 5 IN(L./a). (41D
=(K,/B)¥? the so-called smectic penetration leng@®].

With the aid of Eqs(3.5 and(3.6), one obtains the micro- The logarithmically slow decay of the orientational corre-
scopic relationt, = («/w"(d))¥4. lation function(4.10 and the logarithmically divergent ther-

The physical significance of the correlation lengths maymodynamic limit L, —) of the mean-square fluctuation
be appreciated with reference to E¢.1), showing that the (4.11) demonstrate that a free membrane does not possess
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FIG. 4. Transverse orientational correlation functith,(r,), FIG. 5. Long-range behavior of the transverse orientational cor-

calculated from Eqs(4.6) and (4.7) with N=10" and m(&¢/a)®  relation functionH, (r, ), calculated from Eqs4.6) and(4.7) with

values as indicated. The dashed curve shows an exponential corrg(¢, /a)2=5000 andN values as indicated. To emphasize the

lation function with decay lengtly /7. weak, long-ranged tail itH, (r,), it has been multiplied by
(proportional to the area element in the base plahlee small-scale

true long-range orientational ordg26,58. While the har-  roughness results from the short-wavelength cuoff

monic approximation breaks down (5\1{) approaches unity,

it can be shown that a free membrane, no matter how rigid4.7) with the lower integration limig, = #/L, extended to

locally (large), is crumpled on length scales larger than theq, =0 (permissible ifég<L,). Although clearly not expo-

free-membrane persistence len§#6,5g nential,H, (r,) has essentially decayed to zerorat= &y,
justifying the interpretation ofx as a transverse orienta-
to=a ex%ﬂ). (4.12 tional correlation lengt26]. However,H, (r,) does not
3kgT approach zero monotonically, but first passes through a nega-

tive region with anticorrelated membrane normals, shown on

a magnified scale in Fig. 5. This coherent feature is a signa-
ture of coupled membranes, not present for a free membrane.
[When examining the larger behavior ofH, (r,) in Eq.

D. Orientational correlation for coupled membranes (4.10, we must, of course, ensure tHat>r, .]

In contrast to a free membrane, a membrane that is 1he physical significance of the different regimes in the
coupled to its neighbors in a lamellar phase exhibits truglecay ofH, (r.) is as follows. On transverse length scales
long-range orientational order, i.e., the harmonic theory prelp tor, =&k, the loss of orientational correlation in a given
dicts a finite (n?) even in the thermodynamic limit membrane is affected only by interactions with the two ad-
(L, ,L,—o). Equations(4.6) and (4.7) yield a closed-form jacent membranes. In this regime, the behawong(rQ is
result for<nf) [5], which, in the physically relevant regime essentially th_e_same as for a fluid mem_br_ane confined be-
whereé,>a and ég<L, , reduces to tween two r-|g|d plates[26]. The- large |r!|t|al decay of

H, (r,) (cf. Fig. 4), as well as the first negative pe@i. Fig.
) sT 5), are therefore independent of the numbleof membranes
(n1)= T 112 In(mY2% /)], (4.13  in the stack. In the region of the negative peak, wherés
still of order éx, n, (0) andn, (r,) have a slight preference
which is independent of sample size. It is of interest to com{or anti-parallel orientation. This is, indeed, the expected be-
pare this result with the corresponding one for a nematidiavior after the first “collision” between adjacent mem-

For a relatively stiff membrane witk>kgT, as for a phos-
pholipid bilayer,&p is of astronomical dimensions.

phase. In the one-constant approximati@g], branes, where the “wandering” membranes change direc-
tion.
) B kgT On transverse length scales betwégrandég, the inter-
(N7 nematic= 2K e (4.14 acting membranes exhibit coherent fluctuatidefs Fig. 3,

giving rise to theN-dependent negative feature i, (r )
whereK is the elastic constant argl, a continuum cutoff.  (cf. Fig. 5. This regime terminates at, ~&g, because
Taking g.= w/d, we see that the director fluctuation ampli- modes of longer wavelengths are essentially compressional,
tude is comparable in nematic and lamell@r smecti¢  and, hence, cannot affect membrane orientation. The descrip-
phases if the elastic modull andK; in the two phases are tion of orientational correlations in a lamellar stack of mem-
similar. This is usually the case in thermotrop2] as well ~ branes thus involves two distinct length scalgs:and &g,
as in lyotropic[5,63] liquid crystals, the typical range being related to the loss of orientational correlations associated
1-10 pN. with incoherent short-wavelength mode& ) and coherent

Figure 4 shows the transverse orientational correlationong-wavelength modestg). This is perhaps seen more di-

functionH, (r ), calculated numerically from Eq&t.6) and  rectly in the transverse orientational structure factor



698

0 L L 1
104 1072 10°

q, &

FIG. 6. Transverse orientational structure facﬁ’b[,(ql), for a
stack ofN (as indicatef coupled membranes, calculated from Eq.
(4.7). The ordinate is in units dfgT£4/(2AK).

I:|l(qi), which governs the mean amplitude of transvers
orientational modes¢cf. Fig. 6). SinceH, (0)=0 (for finite
N), it follows that the integral oH, (r ) over the base plane

must vanish. Although not directly evident in the semilog

plot of Fig. 5, the integrals ovefl | (r,) are independent of
N and equal in magnitude to the integral over the- (
independentpositive part ofH, (r,) in Fig. 4.

V. MAGNETIC-FIELD EFFECTS

A. Magnetic coherence length

BERTIL HALLE AND STEFAN GUSTAFSSON
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- kT q?
H(q)=i 2 2 _2J_ . o (52)
Vo Kyailai+éuf(e;8)]1+Baq;
where we introduced the angular function
f(@;8)=sgnAx)[coge cog2pB)+sirfe cogs],
(5.3

with ¢ the angle between the axis and theq vector. Fur-
ther, ¢y is the magnetic coherence lend#¥], defined as

1/2 1

B_O .

to Ky

fu= Em)

(5.9

The physical significance of the magnetic coherence length
is as follows: for a spatial region of linear dimension of order

&w or larger, the net magnetic torque is stronger than the
elastic torque that maintains the macroscopic orientation in-
duced by the boundary conditions, and, hence, the optic axis
of that region tends to reorient so as to minimize the mag-
netic energy. This behavior is well known for nematic

ephases, which are readily aligned by moderately strong mag-

netic fields[22].

B. Magnetic-field effect on a free membrane

In the absence of membrane coupling, a lamellar phase
would respond to a magnetic field in much the same way as
a nematic phase. For example, a magnetic field along the
optic axis (3=0) of a diamagnetically positiveAx>0)
lamellar phase strongly suppresses director fluctuation
modes of wavelengths longer than the magnetic coherence

length. Inserting Eq(5.2) with B=0 into Eq.(4.5), and as-

As a consequence of the anisotropy of the molecular diasuming thatl ,>d, we obtain, fora<r, <L ,

magnetic susceptibility tensor, an external magnetic field ex-

erts a significant torque on a sufficiently large part of any H (r,)= kB_T Ko(r, I£y) (5.5
system possessing long-range orientational order. In the LV 2y OV LIEMD '
presence of a magnetic field, the elastic free-energy func-
tional (3.1) of a lamellar phase must be supplemented with &and, fora<éy <L, ,
magnetic ternj 34,64 T

<n§>=2% In(méy /). (5.6)

Fulu(r)]= =} | dr (4o A x{Bo-n(r) 7
:%(47T/M0)AXBSJ dr

X

au\? au\?
cog2p) X +CO§'3(E) , (5.1

whereu is the vacuum permeabilityy y= x,— x, the mac-
roscopic diamagnetic susceptibility anisotropy, @glthe
uniform external magnetic fieldWe use Sl units through-
out) To obtain the second form in E@5.1), we have in-
voked the harmonic approximatiq@.9) and introduced the
angleg (cf. Fig. 1) between the optic axisz] and the mag-
netic field (which, by convention, is in th&-z plane[34]).

Fourier expanding the displacement field) in Eq. (5.1)
and applying the equipartition theorem t&{u(q)}]
+ Ful{U(g)}], we obtain, for the orientational structure fac-
tor in the presence of a magnetic field,

A comparison of Eqgs(5.6) and (4.11) shows that, in the
presence of a magnetic fielevhich might be the geomag-
netic field, even a free membrane possesses true long-range
orientational order. The modified Bessel function in Eq5)
goes as Infy/r,) for r, <&, and as (éy/2r,)Y%exp

(=r /&) for r; > &y . On length scales much shorter than
the magnetic coherence length, the orientational correlation
thus decays logarithmically as in the field-free case, Eq.
(4.10, whereas, on length scales much longer thgn,
H,(r,) exhibits an essentially exponential decay witf
playing the role of a transverse orientational correlation
length, in close analogy with thHghree-dimensionainematic
case[22].

C. Magnetic-field effect on coupled membranes

A lamellar phase differs fundamentally from a nematic
phase in that it possess@gias) long-range positional order
in one dimension. In the absence of defects, the repulsion
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between adjacent membrar{es, at least, their excluded vol- 12
ume strongly opposes the magnetic torque, which, in the
absence of membrane coupling, would tend to realign the
optic axis. In fact, under most conditions the magnetic-field

effect can be neglected for lamellar phases. To show this, we &
rewrite the orientational structure factor in E§.2) as S
_\\Q
2 1
~ keT &k X S
H(Q): 2 / 2f . d 2" =
VKy x4 (€ ém)“f(e; B)X+(q.d)
Since the denominator is a quadratic polynomial Xn 0.9 ' ' ' '
- 2 ; : ; 0 02 04 0.6 0.8 1
=(q, éx)*, it follows that the magnetic terrflinear inx) can n

be neglected if, for alle and q,, 3(&/éw)?lf(e;B)]
<|qgd|. Since|f(¢;B)|<1 and|q,d|<=/N, the magnetic-
field effect on the orientational structure factor can therefore giG. 7. Magnetic-field effect on the adiabatic spectral density
be neglected if J(0) in a lamellar phase witi\y<<O and the field parallel
=0) or perpendicular 8= 7/2) to the optic axisJ(0) was calcu-

lated fi Eq.(5.12 with N=10"
£y Eal(2m) 12 (5 |aedfomEaG1aw

The physical basis of this condition is clear. Only distortionUnder conditions whereF (q,7)=exp(—¢’D, ) (cf. Sec.
modes with transverse wavelengths in the ragge<l/q,  VI), the relative magnetic-field effect on the adiabatic spec-
< &g can be magnetically influenced; at shorter wavelength#ral density is obtained from Eq¢5.2) and (5.11) as

the magnetic torque cannot compete with the elastic torque,

at longer wavelengths the modes do not affect membrane J(0;Bo) _ 4 f”’zd (4 code—1)

orientation. If inequality(5.8) is satisfied, such a range does J(0;0)  m°InN Jo i ¢

not exist. In terms of the magnetic-field stren@h, condi-

2
tion (5.8) read m h*f
ion (5.8) reads . = afCta”(Uz_h4fz)12
" X d y
g2 Mol kW (d)]*2 59 fl v (2— h?f2)172

with f as defined in Eq(5.3 andh=&g/(&y\27) a field
parameter proportional t8,. Equation(5.12 holds forh
D. Broken symmetry < 1. Most lamellar phases havey<0, so that the magnetic
When condition(5.8) is violated, we must recognize that free energy is minimized with the optic axis perpendicular to
an external magnetic field generally breaks the intrinsidhe magnetic field. The configuratigs= /2 is thus stable,
uniaxial symmetry of a lamellar phase. As is evident fromwhereas=0 is metastable. As expected, we see in Fig. 7
the unsymmetrical dependencexandy in Eq.(5.1), thisis  that the magnetic field suppresses director fluctuations for
the case whenever the magnetic field and the optic axis a8= /2, whereas it enhances them f6=0. It should be
not collinear 3#0). As a consequence of the broken sym_noted that, since the field effect depends@rhe lab-frame
metry, the orientation dependence of the lab-frame spectrapectral density has an implicit orientation dependence, apart
densities is no longer given by E.3). In fact, there are from the explicit one displayed in E¢2.3).
now five, rather than three, distinct irreducible crystal-frame The divergence a@t=1 of the director fluctuations in the
spectral densitief34,36. In the harmonic regime, however, metastable configuratiof3=0 for Ax<0 or g==/2 for
director fluctuations still contribute only a single term to the A x>0) signals a breakdown of the harmonic theory. At the
secular lab-frame spectral density, as in E6), but the  critical magnetic field k=1), the lamellar phase undergoes
time correlation function is noy34] a transition to a buckled phase where the ground-state con-
figuration of the fluid membranes is no longer flat but exhib-
its a (statig periodic undulation of wavelength ¢2Y%¢g
and amplitude of orde¢Z/d [64]. This buckling instability,
_ _ ) _or Helfrich-Hurault transitio22], results from the interplay
which reduces to Eq(2.8) in the field-free case. Equation of magnetic and elastic torques and boundary conditions.
(2.14 must therefore be generalized to The stability conditionh<1, or (2m)Y%,>¢g, may be
compared with the analogous conditioné,,>L,, for sta-
bility with respect to the Fredericksz transition in a nematic
G(1)=3 (4cod @_1)|:|(q)|:(q,7)_ (5.11) phase[22]. Sinceé,, is typically only one order of magni-
q tude larger in nematic phases whlle> &g, it is clear that

G(7)=3(n(0)ny(7))—(ny(0)ny(7)), (5.10
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magnetic-field effects are much more important in nematidrane peristaltic which can be disregarded, and a low-

phases than in lamellar phases. frequency undulation mode with a characteristic frequency
[44]
VI. DYNAMICS OF ORIENTATIONAL FLUCTUATIONS «
IN A LAMELLAR PHASE r= po 92, (6.4)

A. Diffusion on a fluctuating membrane

On the supermolecular length and time scales of interesthere 7 is an effective shear viscosity. In the undulation
here, the single-particle motion of the spin-bearing moleculdn®de, €ach membrane in the stack fluctuates independently
obeys the classical diffusion equation. The single-particldrom the others, unaffected by the direct membrane coupling
correlation function in Eq(2.17 can then be identified as W(S)- There is, however, a hydrodynamic coupling between
the spatial Fourier transform of the Green’s function for theddjacent membranegat a mean distance). This distin-

diffusion equation, i.e., gujshes the undulation mode from the single-membrane
(Zimm) mode,I" = kq>/(47), where only the hydrodynamic
Fs(q,7)=exgd —(g°D5+q2D3) 7], (6.1)  self-interaction is presenf21]. In a lamellar phase, the

single-membrane mode is relevant only tprd>1 [72,73
whereD? andD? are the self-diffusion coefficients for mo- and, like other high-frequency subhydrodynamic mddds-
tion in the base plane and along the optic axis, respectively76], is of no consequence for spin relaxation.
We assume that diffusion across the membranes is negligibly As expected, the direct membrane interaction comes into
slow, i.e., we seD§= 0. It can be shown that the effect of play for obliqgue wave vectorgg(+#0). In this more general

longitudinal diffusion onJ(0) can be neglected if case, the dominant low-frequency mode, referred to as the
baroclinic mode, has a dispersion relation of the form
D§< d> InN 62 [23,77,7§
DY 4gin(L /a)’ ' by 22 g
K q; +qzd/ &
=& 65

This inequality may not be satisfied in thermotropic smectic- nd  g*+agi/d? '
A phaseg65], but should hold in lyotropic lamellar phases _ o _
free from microscopic structural defed6,67). For q,=0, this baroclinic mode degenerates into the pure

The transverse self-diffusion coefficieBt® in Eq. (6.1) undulation m0d6(6.4). Forq, é&k<q,d<1, it reduces to the
refers to projected displacements in the base plane. In ge§9-called slip mod¢23]
eral, Df is smaller than the curvilinear self-diffusion coeffi- 4 42
cientD, that characterizes molecular motion on the undulat- = K_4 PP=— aﬁ (6.6)
ing membrane. If membrane undulation is much faster than anéy an

diffusion (the limit of annealed disordgrthe base-plane dif- _
fusion coefficient ig68] where Eq.(4.8) was used in the last step. In contrast to the

undulation mode, the sligand baroclini¢ mode involves a
DS=(1-%(n?))Dy. (6.9 lateral flow of the intermembrane fluid as the membrane

separation is modulated. This gives rise to theerm in Eq.
In the opposite(more realistig limit of slow undulations (6.5). Using a discrete-membrane-stack model of the lamel-
(quenched disordgrD® is in general smaller than in the lar phase, one obtaing=12 when the membrane thickness
annealed limit. Within the harmonic regime, however, thei$ Small compared td [23,73. _ _ o
results forDY in the two limits coincide[68]. It appears, Some remarks are in order regarding the microscopic in-
therefore, that the projected diffusion process is independer"Pretation of the phenomenological coefficients that appear
of the dynamics of membrane undulation, as long as thd] the hydrodynamlc 'anaIyS|s. First, the effect of membrane
undulation amplitude is sufficiently smaharmonic regimg stretching has been_ ignored. A_Ithough the membranes were
justifying the factorization of the total correlation function [@ken to be locally incompressible, a corrugated membrane
F(g,7) in Eq. (2.22. Such a factorization is not possible for has a finite lateral compressibility79], which leads to a

a strongly fluctuating membrane, as can be shown explicitiF!i9nt slowing down of the modef’7,80. Second, mem-
for one-dimensional mode([$9]. rane corrugation on short wavelengths also reduces the

bending rigidity, leading to aq, -dependent logarithmic
renormalization ofx [27,81. For long wavelengthsq( &k
<1), the effectivex should thus be slightly smaller than the

In the general case, the hydrodynamics of a lamellabare (short-wavelengthrigidity [5]. In principle, the mode
phase features seven coupled mofiz3,7(. Nuclear spin relaxation ratd” should also be renormalized. A recent study
relaxation, however, is only affected by low-frequencyshows, however, that the single-membrane mode does not
(<€MHz) modes that modulate the membrane curvature. Atenormalize[79]. Third, most hydrodynamic treatments of
the low frequencies of interest here, the system can be restacked-membrane models have focused on dilute lamellar
garded as incompressible and athermal, whereby only thrgghases, where the membrane spadlrig large compared to
coupled modes have to be retaingZ8,71. In the special the membrane thickness. If this is not the case, as in most
case of a purely transverse wave vectqr=(@, ), these in- phospholipid-water systems, the hydrodynaiind equilib-
clude two high-frequency modésansverse shear and mem- rium) parameters must be interpreted accordiig$,71,82.

B. Hydrodynamic modes in a lamellar phase
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103D /D (p.0) functionG(7) in Eq. (2.8 and the associated spectral density

Lt . functionJ(w). Unless otherwise noted, we assume that con-
dition (5.8) is satisfied so that the magnetic-field effects dis-
cussed in Sec. V can be ignored. In this section, we consider
the limiting case where molecular diffusion is much faster
than collective membrane dynamics. We then h&vg
>DC, so thats=1 in Eq.(6.8) and

F(q,7)=exp—q?D3 7). (7.2

For the following development, it is convenient to intro-
duce four characteristic frequencies. Two are associated with
the transverse cutoffs

w,=m?D5/a?, (7.2
FIG. 8. Wave-vector dependence of the inverse of the effective
transverse diffusion coefficierd, (q), calculated from Eq(6.8), W = szf/Lf, (7.3
with =0 (no molecular diffusionand the indicated values of the
coupling parameted. and two are related to the orientational correlation lengths
According to the fluctuation-dissipation theorem, the we=mDY/E, (7.9
characteristic mode frequend&dyemerging from a linearized
hydrodynamic treatment can be identified with the inverse wB=1-er/§§. (7.5

correlation time of the displacement-mode time correlation _ S _
function in Eq.(2.18. By combining Egs(2.22, (6.1), and ~ From Egs.(4.8) and (4.9 it follows that wg=wy/N, i.e.,
(6.5), we can thus express the total mode correlation functiorihese frequencies typically differ by four orders magnitude or

as more.
F(q,7) :eXF{_QEDL(Q)T]' (6.7) A. Time correlation function
with an apparent, wave-vector-dependent, transverse “diffu- Inserting Eq.(7.1) into Eq. (2.21), converting the sum
sion coefficient’ D (q) given by overq to an integral overq, ,¢,q,), and making use of Eq.
(4.5), we obtain
D,(q)=D,| 5+(1- 8 — 2 L) 6.8 A
HA=b (o?p+mlP)+al?] G(n)=5_ f dg,q,H, (q,)exp —g?DS7).  (7.6)

with the reduced variablep=(q, £)%/ 7 and {=q,d/ . -

Further, we have introduced the relative diffusion coefficientAs seen from Fig. 6H, (q,) goes to zero fog, <1/§5. As
long aség<<L, , we can therefore extend the lower integra-

6=D3/D,, (6.9 tion limit in Eq. (7.6) from /L, to 0, makingG(7) inde-
pendent of membrane sizd (). This is a direct conse-
with D, =D?+ D¢ andD{=«/(7d). Finally, we have de- quence of membrane coupling, which makes the
fined the coupling parameter orientational correlation functiohl, (r,) vanish forr, > &g
(cf. Fig. 5. In contrast, for a free membrantd, (r,) decays
o=d/¢. (6.10 only logarithmically[cf. Eq. (4.10], wherebyG(7) depends

For strongly coupled membranes, the patch leggtis short onL, atal tzlmes. In particularG(0)=InL, [cf. Eq.(4.17)]
and o large, and vice versa. and J(0)«L? [6]. For a free membrane, however, the

If the membrane coupling is not too strong<1), the m_agnetic—field effect o.rh-l%(qi) cannot be ignored and this
baroclinic mode can be several orders of magnitude slowefill reduce, but not eliminate, the dependenceGifr) on
in the slip limit (where coupling is most strongly manifested Membrane sizg6]. . _ _
than in the undulation limitcf. Fig. 8. At low frequencies, We are only interested in the behavior G{7) on time
the spectral density functiod(w) in Eq. (2.23 will there- s_cales ™ 1lw,, where diffusion-induced _dlrector f!uctua-
fore be profoundly affected by membrane coupling, not onlytions are slower than local molecular motions. Prqwdgd that
via the static orientational structure factétq), but also via éx>@ we can then extend the upper integration limit in Eqg.

the dynamic structure factoB(q,w) resulting from Egs. (7.6 from m/a to «. InsertingH, (q, ) from Eq. (4.7) into

(2.24 and(6.7). Eq. (7.6), and integrating oveq, (from 0 to), we find
keT 1 .
VIl. TIME CORRELATION FUNCTION AND SPECTRAL G(r)=——5 [g(wBT)—g(wKT)], (7.7
DENSITY IN THE FAST-DIFFUSION LIMIT 4mk W T

We are now fully equipped to address the central issue ovith the auxiliary functiong(x) defined in terms of the sine
this work, the calculation of the orientational time correlationand cosine integrals as
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/o semiflexible space cunf@4,85, or three-dimensional diffu-
. T sion in a nematic phase in the presence of a magnetic field
10° p== h [85,86], as well as for modulation of the internuclear vector
by relative translational diffusion in two-dimensional sys-
5 i tems[30-32.
s 107 To identify the physical basis for the unexpected
& = asymptotic behavior of5(7), we return to Eq.(7.6). We
—E 10 note that, for larger, only smallg, values contribute to the
S i integral. Taylor expandingd, (q,) aroundq, =0 and per-
106 forming the resulting standamgi, integrals, we obtain
I G(T)=i HL(O)(DET)‘lJrﬁHL(O)(DfT)‘s"2
108 L 1 ' A 2
0% 107 10° 10°
O 7 + A7 (0)(DS7) 24|, (7.12

FIG. 9. Decay of the time correlation functi@y7) in the fast- h ifios diff h
diffusion limit. The solid curve was obtained by numerical integra- WNere @ prime signifies differentiation with respectdo.

tion of Eq. (7.6) over the range &q, <w/a. On this scale, it is From Eq. (4.7), we obtain HJ_(O) 0, HJ_(O) 0, and
indistinguishable from the analytical result in E@.7). The dashed H”(O) 2kgTé2 &5/ (m?AK), which, when inserted into Eq.
curves correspond to the limiting results. E¢8.9—(7.11. The  (7.12), reproduces the long-time limit, E¢7.11). To obtain

parameter values alé=10" and 7 (¢, /a)=100. G(7)~7 1, we must clearly havéi, (0)#0, which would
. ) ) be the case for an exponentially decaying orientational cor-
g(x) = Ci(x)sinx—[Si(x) — m/2]co. (7.8 relation functionH, (r,). We can conclude, therefore, that

the faster asymptotic decay &f( 7) is a consequence of the
Manticorrelation of membrane normals in the rargye<r |
< ¢g (cf. Fig. 5), induced by coherent undulations of many
coupled membranes in a multilamellar stack Sec. IV D.
It is interesting to note that the asymptot®(7)~ 7 2
KT decay in Eq.(7.11) applies only to a lamellar stack with a
G(7)= 8 [1—y—|n(w§r)], (7.9 finite number of membranes. In the limil—c«, also
ég—©, so the regime r>1/wg does not exist. The
wherey=0.5772 . .. isEuler’s constant. In this regime, the asymptotic behavior is now given by B@.10, i.e., we have

— 71 . .
molecule has not yet diffused out of the initial membrane}%&?lﬂzo .ETha rgsuiglglsso emerges from Hq.12, since,
patch of area&2, andG(7) is nearly the same as for a free » BG-15-0Y
membrane of sizé& | =& .

Using the appropriate expansions of the auxiliary function
g(x) [83], we can identify three distinct regimes in the decay
of G(7). In the short-time regime, d,<7<llwy, Eq.
(7.7) reduces to

In the intermediate-time regime, df<r<1/wg, Eq. ﬁi(o):kB_Ti_ (7.13
(7.7) yields A 2x
kgT According to the fluctuation-dissipation theorefh], the
G(n)= 8xwoT’ (7.10 quantitygﬁ/(ZK) may be interpreted as an orientational sus-
« ceptibility, which is nonzero only in the limiN—«. The
and in the long-time regimer>1/wg, slower asymptotic decay oB(7) for an infinite stack of
membranes, and the consequent logarithmic divergence of
kgT J(0), aremanifestations of the well-known Landau-Peierls
G(7)= m (7.13 instability: for any three-dimensional system exhibiting one-

dimensional periodicity, thermal fluctuations destroy the
Membrane coupling is strongly manifested in both these relong-range order in the thermodynamic linfit]. Although
Figure 9 shows the decay (), illustrating the accuracy Practical concern. First, real systems are finite. Second, in the
of Egs.(7.9—(7.1]) in their respective regimes. presence of an external magnetic fi¢ihich could be the
NMR field or the geomagnetic field condition (5.8) will
ultimately be violated abl increases. When this happens, the
magnetic coherence lengly replaces{g as the transverse

The asymptotic decay in E7.11), G(7)~ 72, is some- cutoff, again makingH, (0)=0. Now, however, we have
what counterintuitive, since time correlation functlons |n- H! (0)+0, leading, with Eq(7.12), to

volving translational diffusion irD unbounded dimensions

generally have the same asymptotic form as the diffusion

propagator, i.e.G(7)~ 7 P2 This is the case for orienta- G(7)~
tional fluctuations due to one-dimensional diffusion along a

B. Asymptotic behavior of G(7)

kgT
TorwSwl% 32 (7.14
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with wy=wD3/£Z,. This result pertains to the stable con-

S
figuration with3=0 andA y>0. Third, on sufficiently long , “s — Ok : a :
time scales, longitudinal diffusion cannot be ignordﬂf( 100 == AN i
#0); this would again lead t&(7)~ 7 *2 Fourth, if the N
membranes are laterally boundéitite L | ), all terms in Eq. i TN i
(7.12 include exponential factors ar@(7)~exp(—w 7)/. - 107+ \ T
For a typical sample, howevegz<<¢)y,,L, and then the S L -
Landau-Peierls instability and the effects of magnetic field, X 104 \
longitudinal diffusion, and finite membrane dimensions can §
all be neglected. i
10° - .
C. Spectral density function L
i i i i -8 1 ! ] I ] 1
an;’(h7e.6§%esctral density function is obtained from E(57) 10 0 o e 5 7 o
an @/ wi,
)= A f arH, (q,) 71
(@)= 277Df A qf+(w/Df)2' (7.1 FIG. 10. Dispersion of the spectral density functitfw) in the

R fast-diffusion limit. The thick solid curve was obtained by numeri-
SubstitutingH, (g,) from Eq. (4.7) and integrating over cal integration of Eq(7.15 over the range &q, <=/a, and the
q, from 0 to o, which is permissible whert,>a, &g thin solid curve is the analytical result in E€/.16. The dashed

<L, , andw<w,, We obtain the surprisingly simple result Curves correspond to the limiting results, E¢8.20 and (7.22.
The parameter values ah=10* and (&, /a)?= 100.
(6,39 p K

provided thaté{x<éy<<L, ,L,.
: (7.16 By expanding the logarithm in E¢7.16), we can identify
three distinct frequency regimes in the dispersionJ@b),
analogous to the three time regimes in the deca@(@f). In

If the restrictionw<<w, is removed, the In term is supple- . X
mented with a term (2f)(wS/w)arctanf,/w), yielding a "€ low-frequency regimep<wg, we have simplyl(w)
~J(0). In the intermediate-frequency regimepg<<w

high-frequency dispersion step that is always negligible com- g
pared to that produced by local molecular motions. At lower<®k» Ed. (7.16 reduces to
frequenciesw<w,, the arctan term adds a constant contri- KT
bution to J(w) that is generally(when &c>a) negligible J(w):% In(wy/w). (7.20
compared to that coming from the In term. 8rwy

The adiabatic limit of Eq(7.16) is

kB1- a)+-u)§

Jw)= 8kwy

w+wg

As expected, membrane coupling is manifested at all fre-
KgT quencies below the diffusional patch frequemfﬁ/. At these
InN. (7.17  frequencies)(w) is dominated by the */decay ofG(r) on
the intermediate timescaled{ < r<1/wg . Indeed, the adia-
As noted in Sec. VII B, the logarithmic divergence Xf0)  batic spectral density can be expressed as
asN—oo is a manifestation of the Landau-Peierls instability
[1]. This connection is made more explicit by noting that J(0)= fllw:dq_ G(7), (7.20)

Vwyg

J(0)=

S
8kwy

J(0)=(u?)/D?, (7.18
which, after substitution o6G(7) from Eq. (7.10), leads to

which follows by combining Eqgs(2.7), (2.19, (2.21, and  Eq.(7.17).
(71) This peculiar result, relating the adiabatic SpeCtral den- At frequencies exceeding the patch frequenmﬁ’<w

sity associated with the time correlation functi¢h8) for <w,, Eq.(7.16 reduces to the same form as for a free
membrane orientation to the mean square fluctuation ifmembprane,

membrane position, is simply a consequence of canceling

g’ factors from Eqs(2.19 and(7.1), each originating from kgT

two transverse space derivatives. J(w)=g—
Like most other results in this section, E.17) assumes

that condition(5.8) is satisfied. In the presence of a magnetic|ndeed, if the compressional term in Hg.1) is omitted, one

field, however weak, conditiort5.8) is violated for suffi-  obtains, foro<w, [6],

ciently largeN. When the magnetic field is taken into ac-

count, J(0) no longer diverges foN—o=. For =0 and kgT
A x>0, we obtain J(w)= Imro arctaffw/ ). (7.23

(7.22

8k’

k ng > i 1
J(0)= B'SK In(27Y2,, 1£,), (7.19 For w>w, this reduces to Eq(7.22, as first shown by

Ak Marqusee, Warner, and DillL9].
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Figure 10 shows the full dispersion dfw), illustrating

S

the accuracy of Eqs(7.20 and (7.22 in their respective 10 0 ' ' '
regimes. On an absolute scale, not normalized Jb9), 10* },_1 i
J(w) is the same for coupled and free membranes at high 0.2
frequenciesm>w§. At lower frequencies, howeved(w) 103 | 4
becomes much larger for the free membrane. For the typical <
parameter valueN=10* and L, /&¢=10°, the adiabatic S 10205 i
spectral density)(0) is some ten orders of magnitude larger s
for a free membrane than for a coupled membrane inamul- ™ 10! E .
tilamellar stack.

The 1 dispersion law in Eq(7.22) is a truly remarkable 10° -
result. It tells us that, in the high-frequency regime, the spin —10
relaxation rategproportional toJ(w)) is entirely independent 107! S - = ) — 0
of the rate of orientational fluctuations. This counterintuitive 10 10 107 10 10 10
result may be understood by noting that the diffusion coeffi- 6
cient D enters via the mode correlation function as o
exp(—qufT). Any dependence 0o6(7) or J(w) on Df FIG. 11. The adiabatic spectral densit{0), calculated from

must therefore appear in the form of one or more charactefE9d: (8.2, relative to the fictitious spectral density(0), duesolely
to transverse modes. The paramaterDS/(D$+ D) is varied at

istic frequenciesc<D}/&“, with & one of the five correlation fixed DS+DC. The other parameter values ake=10", a=12,
or cutoff lengths that characterize the transverse elastic L
and o as indicated.
modes of a lamellar phask; , &y, &g, &, anda (usually
decreasing in that orderA free membrane, however, pos-
sesses no intrinsic characteristic length, apart from the cutoff
lengthsa andL, . As a result of this peculiar property of a N place of Eq.(7.18, we now have
free membrane](w) must be independent dijf in the fre-

A. Adiabatic spectral density

- ([0
quency rangew, <w<w,. In the presence of a magnetic Joy=> ——1 (8.1
field, however, the magnetic coherence lengghintroduces a Du(@
the magnetic frequenayy, = 7D?/ &%, and Eq.(7.22) is re- o .
placed by(for =0 andAX>0)l Substituting(|((q)|%)=H(q)/q? from Eq.(4.2) andD, (q)

from Eq. (6.8) and integrating oveq space, we obtain, for
&c>a andé&g<<L, (so that theg; limits can be set to 0 and

w)l
3w) kgT Tw T (7.24 keT 2
w)— 2 . . — o _ 2
8kw 1+(_M) J(0) 8Kng[MN 77_(1 o
mTw
1 arctafA/(wd
« f g ACRANTID]| o
1N Ag
For oy<w<w,, we recover Eq(7.22), whereas, forw,
<w<oy, with wx=m(D$+D%)/2 and
A=[Sa+(1-8)(o*+ 6m2?)]Y2 (8.3
kBT w\
Jw)= drany, In ol (7.29 The_remai_ning parameters in E@.2) were (_jefingd_in c%n—
nection with Eq. (6.8). In the fast-diffusion limit D7
>DC), Eq. (8.2 reduces to Eq(7.17), i.e.,
VIII. TIME CORRELATION FUNCTION AND SPECTRAL kBTgﬁ
DENSITY FOR DIFFUSION AND COUPLED J(0)= (8.9

———= InN.

MEMBRANE UNDULATIONS BwxD]

The results of Sec. VIl are strictly valid only in the fast- In the slow-diffusion limit ©7<D€), Eq. (8.2 yields
diffusion limit, whereD?>D®. When the observed nuclear Tel ,
spin resides in a large molecule, such as a phospholipid, B'Sk |7
dliorector fluctuations agr’e due mainly to collectivg me%braele J0)= 87kd*DC T+2(’2+ 2(ato)inN|. (8.5
undulation, and the slow-diffusion limith?<D€) is more
appropriate. In the following, we consider the general case, Figure 11 reveals a dramatic effect on the adiabatic spec-
without any restrictions on the relative magnitudesD)j tral densityJ(0) of dynamic membrane coupling via the ob-
and Df. The mode correlation function is then given by Eq. lique (g,#0) baroclinic distortion modes. The diffusivity
(6.7, with the wave-vector-dependent “diffusion coeffi- ratio dis varied here, but the sumf+ Df is kept constant.
cient” D, (q) in Eq. (6.9. We comparel(0), calculated from Eq(8.2), with a fictitious
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wK wa
T T T T T T T T T T
10*
o 10% -
é _
N 8
B ~ 100
=)
=
102
10-4 1 1 ) [ L 1 !
108 10%  10* 107
o w/a)K

FIG. 12. Variation of the adiabatic spectral denslit®), calcu-
lated from Eq.(8.2), with the membrane coupling parameter
=d/&¢ . The parameter values al=10%, «=12, andé as indi-
cated.

FIG. 13. Dispersion of the spectral density functidfw), cal-
culated from Eq(8.6) with a=12, 0=0.25, N=10%, 7(&c/a)?
=10% and § as indicated. The plotted(w) has been reduced by
kgT/(4mkwy). The dashed line corresponds to the Hispersion

. . in Eq. (7.22.
spectral densityd, (0), corresponding to purely transverse in Eq. (7.22

modes and thus given by E¢8.4) with DS replaced by
D3+DC. _ o
If membrane coupling is weaks(<1), the oblique baro- To calculate the spectral density functidfw) in the gen-
clinic modes, being affected only by hydrodynamic interac-€ra! case, we start from E.23, inserting the static struc-
tions, are very slow(cf. Fig. 8. In this weak-coupling re- ture factorH(q) from Eq. (4.2 and the(normalized dy-
gime, collective membrane fluctuations can have arl@mic structure factof5(q,») from Egs.(2.24 and (6.7).
enormous effect od(0), butthis effect is independent of the Converting the sum in Eq2.23 to an integral and introduc-
rate of the membrane fluctuations. In fact, for sufficientlying reduced variables as in E.8), we obtain
small o, J(0) is given by Eq.(8.4), with no reference to

B. Spectral density dispersion

D (cf. the uppermost curve in Fig. LINote that the limit kgT p pQ(p,d)
o=0 cannot be taken without violating the conditicia Iw)= Ak f dPJ d¢ 07+ ) [p2Q%(p.0) + 07"
<L, , used in deriving Eq(8.2), which requires thair (8.6)

>./dL, /L, .] This somewhat paradoxical result can be un-

derstood by examining Ed6.8): when membrane coupling where we have also defined a wave-vector-dependent patch
is weak (0<1), molecular diffusion can dominaf®, even frequency

thoughD?<D¢. The dynamics of weakly coupled mem-

branes are simply not characterized by the “diffusion coef- @S @C
ficient” D€ for the much faster, purely transverse, undula- 108 ~———f 77—+
tion mode. ho\oli/'w 7
If membrane coupling is stronge&1), the baroclinic 10° —*d 1: ' ]
modes are of small amplitude and decay rapidify lattice . 00} ]
vibrations in a soligy competing efficiently with molecular 10° - ]
diffusion. In this strong-coupling regime, the oblique baro- 3 2 F0-5— ]
clinic modes reducd(0) by a factor (- J1— 8)/§ as com- 5 107 —1— 9 )
pared to the purely transversg (0). When D3<D€, 100 10— i
J(0) is thus one-half of Eq(8.4), with DY replaced byD® | |
(cf. the lowermost curve in Fig. 11 (Note that the limit 102l )
o—o cannot be taken without violating the conditigi L
>a, used in deriving Eq.(8.2), which requires thato 104 L L .10
<d/a.) 10% 10 10* 102 10° 102 10*
Figure 12 displays the strong dependenceJ@) on 0/ oS

membrane couplingboth static and dynamic effegtsThe
coupling parametes=d/ & is varied, whileD$ andD€ are

fixed. In the faSt'd'ffgS'on limit 62 1), the static coupling FIG. 14. Dispersion of the spectral density functidw), cal-
effect makesJ(0)~ &k, as predicted by Eq(8.4). In the  ¢jated from Eq(8.6) with a=12, §=10"6, N=10%, m(&«/a)?
slow-diffusion limit (6=0), the dynamic coupling effect is = 7(d/as)?=10%/¢2, and o as indicated. The plotted(w) has
also manifested, leading ti0)~ &z, as predicted by Eq. been reduced bsT/(4mxwS). The dashed line corresponds to
(8.5 for o<1. the 1k dispersion in Eq(7.22.
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Q(p,H)=7D, (p,0)I . (8.7  verse modes will then be given significant weightH#yg).
o s . The 1k dispersion is thus produced by purely transverse
In the fast-diffusion IImIt,QK=wK, and the double Integral modes(as if the system were two dimensio)‘]mf wave-
can be performed analytically, yielding E(7.16 whenéx  |engths shorter thar. At lower frequencies ¢<wY),
>a, {p<L,, and o<w,. In the general case, however, j(,) is affected by hydrodynamic interactions, reducing
analytical efforts do not seem to give useful results. Wey(qy py a factor (cf. Sec. VIIl A). Wheno— =, Eq. (6.8)

therefo_re resort to numerical integra}tion. _ _ yieIdsQK=wE(1+§2/p2), showing that oblique modes can
In Fig. 13, we compare thé(w) dispersions in the fast- contribute fore< oS
. . . S C K-
and slow-diffusion limits for the same value &7 +D7 . For sufficiently weak membrane coupling, the»Ilegime

Due to the effeqt of S!OW baroclinic mode$(0) is much .is extended down to the diffusional patch frequemﬁ/(cf.
larger and the dispersion starts at much lower frequency e uppermost curve in Fig. 14Although DS<DC, it is
. h ,

the slow-diffusion limit. As expected, the two dispersion S .
curves converge at high frequencies. Most interestingly,now DY that sets the low-frequency cutoff for thewl tis-

there is a power-law regimel(w)~ /o™ with n~1, that persion. This happens because weakly coupled membranes

extends to much lower frequencies when diffusion is slowfIUCtuate too slow to compete with molecular diffusion,

and baroclinic modes are responsible for the orientationajhich then also determine}0) (cf. Sec. VIl A). For mod-

fluctuations. erately weak coupling, thé(w)~ 1/0" dispersion deviates

Figure 14 shows)(w) dispersions for slow diffusiond slightly from the strictly two-dimensional & form: n>1

C C H
—10%) at variable coupling parameter. In the strong- [OF @<wg Whereasn<1 for w>wy. For o<1, dynamic

coupling limit (0>1), the dispersion is much the same as incoUPling effects are hardly manifested at all aid) is

the fast-diffusion limit, but withD? replaced byD®. In essentlalzlx the same as in the fast-diffusion limit with

particular, we find a 14 dispersion in the rangeC<w  7(ék/@)°=m(d/ac)" (Note the difference in frequency
LC C) 2 , : K~ . scale between Figs. 10 and 14%=w3/5 and §=10"°

<w,, with og=wD7]/&x. The 1k dispersion can be ratio- here) : KoK

nalized with the aid of Eq8.6), where the two factors in the ere

integrand correspond tBl(q) and S(g,w). At a given fre-

guencyw, S(d,w) is dominated by modes withQ(p,o)

~w. For w>wg and for strong coupling(so that Qy This work was supported by grants from the Swedish

~wf/f), these are modes with>1. Since{<1, only trans- Natural Science Research Coun®IFR).
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