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Orientational correlations and spin relaxation in lamellar fluid membrane phases

Bertil Halle and Stefan Gustafsson
Condensed Matter Magnetic Resonance Group, Department of Chemistry, Lund University, P.O. Box 124, S-22100 Lund, Sw
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Thermal fluctuations of fluid membranes in multilamellar systems have been extensively studied during the
past decade by means of nuclear spin relaxation. Such data have generally been analyzed in terms of an
effectively two-dimensional membrane model, which does not properly incorporate the mutual coupling of the
individual membranes. Here we present a comprehensive theory of spin relaxation induced by small-amplitude,
long-wavelength elastic distortions in a multilamellar stack of fluid membranes. In contrast to previous theo-
retical treatments, we find that membrane coupling can profoundly affect the spin relaxation behavior via its
effect on the amplitudes and rates of membrane distortion modes. A physical basis for the resulting, rather
intricate, spin relaxation behavior is provided by analyzing the spatial correlation function for the local mem-
brane orientation. We find that the decay of this function involves two correlation lengths: one is related to
interactions with the two adjacent membranes, and the other reflects the coherent fluctuation modes in the
entire membrane stack. This analysis explains why the time correlation function has the asymptotic form
1/t2 rather than 1/t, as expected for a two-dimensional system. A reinterpretation of existing low-frequency
spin relaxation data from multilamellar phospholipid-water dispersions in terms of our theory should provide
valuable insights into the nature of intermembrane forces.@S1063-651X~97!03707-0#

PACS number~s!: 68.10.2m, 61.30.Gd, 76.60.Es, 87.22.Bt
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I. INTRODUCTION

Thermal fluctuations profoundly influence the static a
dynamic properties of any unidimensionally periodic stru
ture @1#. Since the pioneering work of Helfrich@2#, thermal
out-of-plane fluctuations of fluid membranes in multilamel
assemblies have been widely studied@3,4#. Much of this
work has focused on phospholipid membranes and the
logical implications of membrane fluctuations. For the e
perimentalist, thermally induced membrane undulations p
vide a handle on two important microscopic properties:
bending rigidity of the membrane and the intermembra
force, which both affect the amplitude and rate of membra
undulations.

The technique of nuclear spin relaxation is arguably
most powerful probe of membrane undulations in multi
mellar systems. The spin relaxation rate is governed by
entational correlations, and therefore reflects the spatial
temporal variation of thermally induced membrane cur
ture. While the static nuclear magnetic resonance line sh
from a lamellar phase depends on the orientational fluc
tions of the membranes@5#, the adiabatic relaxation rate de
pends on their positional fluctuations@6#. The orientational
fluctuations are governed by relatively short-wavelength
dulation modes, and therefore mainly provide informati
about the bending rigidity. The positional fluctuations a
influenced by long-wavelength modes and therefore also
pend on the spatial variation of the intermembrane force.
intriguing possibility of using nuclear spin relaxation
study intermembrane forces has only recently been rec
nized @6#.

Spin relaxation rates from multilamellar fluid membra
systems have been determined over a wide frequency r
using field-cycling@7–9# or pulse-train@10–14# techniques,
and at zero frequency using transverse relaxation@10–17#.
All frequency-dependent relaxation data from multilamel
561063-651X/97/56~1!/690~18!/$10.00
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systems published to date have been interpreted in terms
simple 1/v dispersion law. This dispersion law was first d
rived by Blincet al. in connection with spin relaxation stud
ies of a thermotropic smectic-A phase, for which it was con
cluded that undulation modes do not contribute significan
to the measured relaxation dispersion@18#. With multilamel-
lar fluid membrane systems in mind, Marqusee, Warner,
Dill later rederived the 1/v law, obtaining a different pref-
actor @19#. Although this derivation is based on the undul
tion mode spectrum of a free membrane, it has been ex
sively applied to multilamellar systems under the assump
that membrane coupling can be ignored@19#.

The extant theoretical treatments of the adiabatic spec
density that governs transverse spin relaxation are also b
on the undulation mode spectrum of a free membrane,
differ in the dispersion relation adopted for the mode dec
rate@11,20#. Stohreret al. @11# used theq'

2 dispersion appro-
priate for a purely transverse undulation mode~q' is the
magnitude of a wavevector in the membrane plane!. Bloom
and Evans@20# advocated either a free-membraneq'

3 disper-
sion or a ‘‘red-blood-cell’’q'

6 dispersion appropriate for a
pair of membranes fluctuating under the constraint of c
stant enclosed volume@21#. These three dispersion relation
differ solely in the way hydrodynamic interaction is take
into account. All of them ignore direct membrane couplin
To avoid divergences in these treatments, the elastic m
spectrum must be truncated. This transverse cutoff length
been variously referred to as ‘‘a long-wavelength cutoff f
the elastic modes’’~of unspecified physical origin! @11–13#,
a magnetic coherence length@14#, or an effective correlation
length for membrane undulations@20#.

In a recent, more rigorous treatment of spin relaxation
multilamellar systems@6#, membrane coupling was incorpo
rated at the ouset in the elastic Hamiltonian@22#. The adia-
batic spectral density differs qualitatively from previous r
690 © 1997 The American Physical Society
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56 691ORIENTATIONAL CORRELATIONS AND SPIN . . .
sults @11,20#, and there is no need for a transverse cuto
Moreover, while a 1/v dispersion regime also emerges fro
the coupled theory, it occurs well above the experimen
frequency window. Since the experimental relaxation disp
sions do exhibit a 1/v regime, they might seem to contradi
the coupled theory. As stressed in previous work@6#, how-
ever, the mode dispersion was taken to be of theq'

2 form.
The results in Ref.@6# are therefore strictly valid only when
molecular diffusion along the membrane is much faster t
membrane undulation. In the opposite limit~and in the gen-
eral case!, it is necessary to take membrane coupling in
account not only in the static mode spectrum, but also in
dynamics of elastic modes@22,23#.

In this work, we present a comprehensive theory of s
relaxation induced by small-amplitude, long-waveleng
elastic distortions in a multilamellar stack of fluid mem
branes, a relaxation mechanism referred to in the literatur
order director fluctuations or membrane undulations. T
present theory differs from previous treatments of the sa
problem primarily in that we include membrane coupling
a consistent way in the static as well as dynamic propert
Although the underlying continuum description of the elas
distortions and the hydrodynamics of a lamellar phase r
on a firm foundation@22#, the involvement of six distinct
length scales makes the problem intricate and someti
subtle.

The outline and principal results of the paper are as
lows. Section II serves to establish a convenient notation
the subsequent development, and to make explicit the c
nection between the experimental observables and the ce
objects of the theory, the orientational time correlation fun
tion G(t), and the corresponding spectral density funct
J(v). Since the theory is restricted to the harmonic regi
of small fluctuations, we consider only the correlation fun
tion that is of second order in the membrane displacem
gradient.

Having introduced the two elastic modulii that gove
membrane fluctuations in a lamellar phase~Sec. III!, we con-
sider in some detail the spatial correlation functionH'(r')
for the orientation of the projected local membrane norm
~Sec. IV!. The relative importance of bending rigidity an
membrane coupling is gauged by the so-called patch len
jK , which emerges naturally from the free energy of elas
deformation of a multilamellar assembly, but does not app
in the single-membrane approach. First implicit in the wo
of Helfrich on steric interactions in multilamellar system
@24,25#, the patch length defines the crossover from a sh
wavelength regime with independent membrane fluctuati
to a long-wavelength regime with coupled fluctuations@26–
29#. It is then natural to assume thatH'(r') decays more or
less exponentially on the scale ofjK @26#. We find, however,
that whileH'(r') has indeed decayed to zero atr''jK , the
membrane normals remain weakly~anti! correlated over
much longer distances. Consequently, two correlat
lengths are needed to characterize the decay ofH'(r'). This
finding explains why, in the diffusion limit,G(t) decays
asymptotically as 1/t2 rather than as 1/t, as is usually the
case for diffusion in unbounded two-dimensional syste
@30–32#.

In Sec. V, we investigate the effect of an external ma
netic field on membrane fluctuations. Whereas the magn
.
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torque radically changes the fluctuations of a free membra
it is strongly opposed by membrane coupling in a multi
mellar system. For practical purposes, the magnetic-field
fect onJ(v) can therefore often be ignored, and is not like
to be responsible for the low-frequency plateau inJ(v) @33#.
This situation may be contrasted with that in nematic phas
where the magnetic field plays a more importance role du
the longer range (1/r ) of the orientational correlations@22#
and the absence of a compressional restoring force. Not
does the external magnetic field influence the adiabatic s
tral density J(0), it can also break the symmetry of
uniaxial nematic phase, modifying the orientation depe
dence of the spin relaxation rates@34#.

The time correlation functionG(t) reflects temporal fluc-
tuations of the local membrane orientation at the location
the spin-bearing molecule. These fluctuations can result f
molecular self-diffusion along the curved membrane or fro
membrane undulation dynamics. In Sec. VI, we discuss th
two processes. Membrane coupling has a profound effec
both static and dynamic aspects of the elastic distortions
lamellar phase. The static effect is due to the spatial c
straint imposed by intermembrane repulsion on the am
tude of membrane fluctuations. The dynamic effect, wh
may be even more important, arises because membrane
pling induces coherent displacement fluctuations in the m
brane stack@22,23#. Since these coherent fluctuations a
much slower than purely transverse membrane undula
modes, they produce a dispersion inJ(v) at much lower
frequencies than in the absence of membrane coupling.

The principal results of this work are contained in Se
VII and VIII, where we calculate the time correlation func
tionG(t) and spectral density functionJ(v). In Sec. VII we
consider the limit where molecular diffusion is much fas
than membrane undulation. This limit is at least appro
mately realized for mobile counterions in oil-swollen dilu
lamellar phases@5#. Since it admits a fully analytical treat
ment, this limiting case is also of considerable heuris
value, providing physical insights not so easily gleaned fr
a numerical treatment. While the spectral densityJ(v) in the
fast-diffusion limit was presented in a preliminary report@6#,
the presentation in Sec. VII goes further by considering a
the time correlation functionG(t). In particular, we relate
the asymptotic decay ofG(t) for finite and infinite systems
to the peculiar behavior of the orientational correlation fun
tion H'(r'). We also show that the 1/v dispersion law
@18,19# applies only at frequenciesv@vK

S , where 1/vK
S sets

the time scale for diffusion out of the initial membrane pat
of areajK

2 , where membrane coupling is not manifested.
In Sec. VIII, we treat the general case where both mole

lar diffusion and membrane undulation contribute to the te
poral fluctuations. When diffusion is slow compared to u
dulation, as for phospholipid membranes, the dynam
coupling effect is dramatically manifested inJ(v) at low
frequencies. An analytical result is obtained forJ(0), reveal-
ing an extremely strong dependence on membrane coup
in the slow-diffusion limit:J(0)}jK

6 as compared toJ(0)
}jK

2 in the fast-diffusion limit. If membrane coupling i
strong, theJ(v) dispersion is essentially the same as in t
diffusion limit, with a 1/v regime extending down tovK

C ,
where 1/vK

C measures the time scale for membrane undu
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692 56BERTIL HALLE AND STEFAN GUSTAFSSON
tions of wavelengthjK . If membrane coupling is weak~jK
much larger than the intermembrane spacing!; however, the
1/v regime extends down to the diffusional frequencyvK

S ,
which is a much lower frequency when diffusion is mu
slower than membrane undulation.

We believe that these results can account for the lo
frequency spin relaxation behavior in multilamellar syste
@7–17#. A detailed reanalysis of the experimental data
terms of the present theory, deferred to a subsequent p
cation, should provide valuable insights into the nature
intermembrane forces.

II. NUCLEAR SPIN RELAXATION
IN A LAMELLAR PHASE

A. Spectral density functions

Within the regime of the conventional second-order p
turbation theory of nuclear spin relaxation@35#, the acces-
sible information about the amplitudes and rates of the fl
tuations that induce spin relaxation is contained in a se
irreducible crystal-frame spectral density functions@36,37#.
In the absence of a symmetry-breaking external field~cf.
Sec. V D!, the lamellar phase is uniaxial~crystallographic
point groupD`h!. There are then three irreducible spect
density functions

Jnn
C ~v!5E

0

`

dt cos~vt!Gnn
C ~t! ~n50, 1, and 2!.

~2.1!

The corresponding irreducible time correlation functions
@35–37#

Gnn
C ~t!5^C2n@u~0!,f~0!#C2n* @u~t!,f~t!#&

2dn0^P2~cosu!&2, ~2.2!

where the arguments of the~unnormalized! spherical har-
monicsC2n(u,f) specify the instantaneous orientation
the major principal axis of the spin-lattice coupling tens
with respect to a crystal-fixed frame~with the z axis along
the optic axis of the lamellar phase!.

The observable spin relaxation rates can usually be
pressed as linear combinations of the crystal-frame spe
densities in Eq.~2.1!. For a uniaxial phase@37#,

Jkk
L ~vk ;b!5 (

n50

2

~12dn0/2!$@dkn
2 ~b!#2

1@dk2n
2 ~b!#2%Jnn

C ~vk!, ~2.3!

wheredkn
2 (b) is a reduced Wigner function@38#, andb is the

angle between the optic axis and the external magnetic fi
By recording the orientation~b! dependence of the spin re
laxation rates, the model-independent quantitiesJnn

C (vk) can
be determined.

The dynamic processes responsible for spin relaxatio
a lamellar phase take place on a broad timescale. Local
lecular motions, such as conformational dynamics and
stricted molecular reorientation, dominate the relaxation
the conventional range of Larmor frequencies (v0/2p
'1–100 MHz) @39#. Here we are concerned with collectiv
-
s

li-
f

-

-
f

l

e

r

x-
ral

ld.

in
o-
e-
n

orientational fluctuation modes that, due to their small a
plitude, contribute significantly to spin relaxation only if the
are much slower than the local molecular motions. Such
rector fluctuations are therefore important only at frequenc
much lower than the conventional MHz range@8#.

In field-cycling relaxation experiments, all three la
frame spectral density functionsJkk

L (vk ;b) provide informa-
tion about director fluctuations, since the probing frequen
vk can be varied over a wide range, down to;1 kHz @40#.
At conventional Larmor frequencies~MHz range!, director
fluctuations contribute only to the secular lab-frame spec
density functionJ00

L (v;b), which is probed at zero fre
quency by the transverse relaxation rate~or the homoge-
neous linewidth! and in the kHz range by pulse-train expe
ments. In particular, the Carr-Purcell-Meiboom-Gill spi
echo experiment measures an effective spectral den
function @41#

JCPMG
L ~v;b!5

8

p2 (
p50

`

~2p11!22J00
L @~2p11!pv/2;b#,

~2.4!

wherev now denotes the pulse-train frequency.

B. Small-amplitude director fluctuations

In the frequency range where director fluctuations co
tribute significantly to spin relaxation, the much faster loc
motions are manifested as a frequency-independent add
contribution to the crystal-frame spectral density functio
The director fluctuation contribution is then described by E
~2.2!, where the angles~u,f! now specify the orientation o
the local membrane normal, referred to as the directorn,
with respect to the optic axis~cf. Fig. 1!. ~The faster molecu-
lar motions also renormalize the spin-lattice coupling co
stant, the square of which multiplies the spectral densities
defined here, in the expressions for spin relaxation ra
@37#.!

The time correlation functions in Eq.~2.2! may be ex-
pressed in terms of the projectionn' of the director on the

FIG. 1. A patch of membrane, showing the definitions of t
directorn, its projectionn' on thex-y base plane, and the anglesu,
w andb. The x axis is defined so that the external magnetic fie
B0 is in thex-z plane.
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56 693ORIENTATIONAL CORRELATIONS AND SPIN . . .
base plane~orthogonal to the optic axis! as

G00
C ~t!5O~n'

4 !, ~2.5a!

G11
C ~t!5 3

2 ^n'~0!•n'~t!&1O~n'
4 !, ~2.5b!

G22
C ~t!5O~n'

4 !. ~2.5c!

If the director fluctuations are of small amplitude, i.e., if t
director does not deviate much from the optic axis so t
^n'

2 &!1, we may neglect fourth-order and higher contrib
tions to Eq.~2.5!. Director fluctuations are then manifeste
exclusively via the second-order time correlation functi
G11
C (t) and the corresponding crystal-frame spectral den

function J11
C (v). The latter contributes to the secular la

frame spectral density function~which is probed at low fre-
quencies! according to Eq.~2.3!:

J00
L ~v;b!5 9

2 sin
2b cos2b J~v!, ~2.6!

where, for notational convenience, we defined the seco
order crystal-frame spectral density function

J~v!5E
0

`

dt cos~vt!G~t!, ~2.7!

and the corresponding time correlation function

G~t!5^n'~0!•n'~t!&. ~2.8!

According to Eq.~2.6!, the second-order director fluctuatio
contribution vanishes at the orientationsb50 andp/2, and
goes through a maximum atb5p/4. At the former two ori-
entations, therefore, the fourth-order contributions come
play. These are treated elsewhere@42#.

C. Director fluctuations versus membrane undulations

In a continuum description, the configurational state o
uniaxial phase can be specified by a unit vector fieldn~r !,
giving at each point in space the orientation of the direc
with respect to the optic axis. This is the conventional d
scription for nematic phases@22,43#. For lamellar phases
however, the configurational state is more naturally
scribed in terms of a scalar fieldu(r ) ~cf. Fig. 1!, giving at
each point the vertical~along the optic axis! membrane dis-
placement away from a reference plane~the base plane!
@22,44#. The displacement fieldu(r ) uniquely specifies a
given thermally excited configuration of the multilamell
assembly with respect to the ‘‘zero-temperature’’ grou
state of equidistant, flat membranes (u[0).

As long as the membranes are free from overhangs
that a given membrane surface can be specified in the Mo
representationz5u(x,y), there is a unique one-to-one co
respondence between the director and displacement fi
@45#,

n5~n' ,nz!5
~2“'u,1!

~11u“'uu2!1/2
, ~2.9!

where“'5(]/]x,]/]y) is the transverse gradient operato
This exact relationship reflects the fact that a nonunifo
displacement of a membrane necessarily induces curva
t
-
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and, hence, a deflection of the directorn away from the optic
axis ~0,0,1!. To second order in the director fluctuation, E
~2.9! reduces to

n'52“'u. ~2.10!

It follows from Eqs.~2.9! or ~2.10! that the descriptions o
the motions that induce low-frequency spin relaxation
multilamellar systems as ‘‘order director fluctuations
~modulation ofn! or as ‘‘membrane undulations’’~nonuni-
form modulation ofu! are entirely equivalent. This funda
mental duality is apparently not generally apprecia
@14,16,17#. Indeed, some authors treat director fluctuatio
and membrane undulations as distinct relaxation mechan
@16#. Here we use the two expressions ‘‘director fluctuatio
and ‘‘membrane undulation’’ synonymously.

In the present work, we adopt the conventional view th
the local membrane normal defines the preferred orienta
of the constituent molecules. Moreover, we assume that
molecular orientation relaxes to the local uniaxial equil
rium distribution ‘‘instantaneously’’ on the time scale o
membrane undulation and molecular diffusion. This
clearly not the case on molecular length scales, but it sho
be a valid description for the long-wavelength modes t
dominate the low-frequency spin relaxation rate. Witho
this time-scale separation, the irreducible time correlat
functions in Eq.~2.2! would have a more complicated stru
ture, as used for describing the faster local motions resp
sible for spin relaxation in the MHz regime@46#. When the
time scales are distinct, the faster motions only enter a
molecular order parameter, the square of which multiplies
spectral densities in the final expressions for the relaxa
rates.

In lyotropic liquid crystals, the hydrophobically self
assembled amphiphilic aggregates introduce a supermol
lar level of structural organization, allowing long-waveleng
fluctuations to be described in terms of interface geome
In molecular thermotropic liquid crystals this supermolecu
level is absent, and the directorn refers to a molecule-fixed
axis rather than to the local interface normal. The order
rector fluctuation mechanism discussed for the molecu
smectic-A phase@18,47,48# is therefore distinct from tha
considered here. In fact, the same viscoelastic continuum
scription has been used for molecular smectic-A and nematic
phases@47–49#. A different continuum description has bee
employed near the~second-order! phase transition where
critical fluctuations couple smectic and molecular ord
@50,51#. Such critical phenomena are not expected to be
portant in lyotropic systems, where the lamellar to nema
phase transition is generally first order.

D. Orientational structure factor

For a system of macroscopic but finite volumeV, the
displacement fieldu(r ) can be developed in a Fourier seri
as

u~r !5(
q
û~q!exp~ iq–r !, ~2.11a!

with ~complex-valued! reciprocal-space mode amplitudes
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694 56BERTIL HALLE AND STEFAN GUSTAFSSON
û~q!5
1

V E dr u~r !exp~2 iq–r !. ~2.11b!

Using Eqs.~2.10! and ~2.11a!, we can similarly expand the
director field as

n'~r !52 i(
q
q'û~q!exp~ iq–r !, ~2.12!

with q'5(qx ,qy) the transverse wave vector.
The time correlation functionG(t) in Eq. ~2.8! reflects

temporal fluctuations of the director orientation experienc
by the spin-bearing molecule. Two distinct dynamic pr
cesses can contribute to the time dependence ofn'(t) ~cf.
Fig. 2!. A molecule that remains at a fixed positionr expe-
riences a time-dependent director due to thermally exc
elastic distortions in the medium. If, on the other hand,
elastic distortions are frozen in, the molecule will still exp
rience a time-dependent director due to its self-diffus
through the quenched director field. These two limiting ca
correspond to an explicit time dependencen'(r ,t) and an
implicit time dependencen'„r (t)…, respectively. In general
both processes take place simultaneously. Ifn' is regarded
as a function oft, its Fourier decomposition should therefo
be written

n'~t!52 i(
q
q'û~q,t!exp@ iq–r ~t!#. ~2.13!

Inserting Eq.~2.13! into Eq. ~2.8!, we obtain

G~t!5(
q

(
q8

q'•q'8 ^û~q,0!û* ~q8,t!&C

3^exp$ i @q–r ~0!2q8•r ~t!#%&S . ~2.14!

Here we assumed that collective elastic distortions (C) and
molecular self-diffusion (S) are independent processes~cf.
Sec. VI A!, so that statistical~ensemble! averaging can be
performed separately for each process. Next, we note
coupling of differentq modes can be neglected in a macr
scopic system@22#, i.e.,

^û~q,0!û* ~q8,t!&C5dq,q8^û~q,0!û* ~q,t!&C , ~2.15!

FIG. 2. Schematic illustration of the two dynamic processes
modulate the orientation of the membrane directorn ~arrows! in a
lamellar phase: membrane undulation at a fixed position~left! and
molecular diffusion on a frozen membrane~right!.
d
-

d
e
-
n
s

at
-

whereby

G~t!5(
q
q'
2 ^û~q,0!û* ~q,t!&C

3^exp$2 iq•@r ~t!2r ~0!#%&S . ~2.16!

The last factor in Eq.~2.16! can be identified with the spatia
Fourier transform,FS(q,t), of the single-particle transla
tional diffusion propagatorFS(r ,t), i.e.,

FS~q,t!5^exp@2 iq–r ~t!#&S

5
1

V E dr FS~r ,t!exp~2 iq•r !. ~2.17!

Note that we can setr (0)50 in Eq. ~2.16! without loss of
generality, since the system is translationally invariant~all
initial positions are statistically equivalent! on length scales
where the continuum description holds. Furthermore, we
troduce the~normalized! membrane displacement correlatio
function

FC~q,t!5^û~q,0!û* ~q,t!&C /^uû~q!u2&C , ~2.18!

and the orientational structure factor

Ĥ~q!5q'
2 ^uû~q!u2&C , ~2.19!

which is the Fourier transform of the spatial orientation
correlation function,

H~r !5^n'~0!•n'~r !&C5(
q
Ĥ~q!exp~ iq•r !. ~2.20!

Combining Eqs.~2.16!–~2.19!, we can express the tim
correlation functionG(t) on the compact form

G~t!5(
q
Ĥ~q!F~q,t!, ~2.21!

with

F~q,t!5FC~q,t!FS~q,t!. ~2.22!

The spectral density function in Eq.~2.7! then becomes

J~v!5(
q
Ĥ~q!S~q,v!, ~2.23!

where S(q,v) is the ~normalized! dynamic orientational
structure factor@52,53#

S~q,v!5E dt cos~vt!F~q,t!. ~2.24!

III. ELASTIC DISTORTIONS IN A LAMELLAR PHASE

A. Free energy of elastic distortion

The phenomenological description of thermally excit
elastic distortions in a lamellar phase, first developed for
smectic-A phase@22#, is based on the energy functional

t
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56 695ORIENTATIONAL CORRELATIONS AND SPIN . . .
F@u~r !#5 1
2 E dr FK1~¹'

2u!21B̄S ]u

]zD
2G , ~3.1!

where¹'
25]2/]x21]2/]y2 is the transverse Laplacian an

the integration is over the system volumeV. This harmonic
approximation is valid for weak fluctuations in the sense t
u“uu25u“'uu21(]u/]z)2!1. Equation~3.1! thus describes
distortion modes of sufficiently long wavelengths that t
membranes are only slightly tilted from the base plane
the spacing between successive pairs of membranes d
only slightly.

The lamellar phase is characterized by two macrosco
elastic modulii: K1 is associated with director splay~or
membrane bending! andB̄ with longitudinal~along the optic
axis! compression at constant chemical potential. The fun
mental distortion modes associated with these elastic mo
are illustrated in Fig. 3. Since the pure compression m
does not introduce membrane curvature, it cannot affect
orientational correlation functions considered here. A gen
mode, however, is a mixture of the two fundamental mod
The first term in Eq.~3.1! is the harmonic approximation t
the splay termK1(“•n)

2 in the Oseen-Frank elastic fre
energy@43#. For a defect-free lamellar phase, the twist te
vanishes identically, while the~director! bend term intro-
duces a coupling between the two terms in Eq.~3.1!, albeit
of negligible magnitude@54#.

To preserve full rotational invariance,]u/]z should actu-
ally be replaced by]u/]z2 1

2u“'uu2 in Eq. ~3.1!. One effect
of this anharmonic correction is to renormalize the elas
modulii K1 and B̄ @22,55#. For a lamellar phase in the ha
monic regime, however, the elastic modulii are thus alte
by at most a few percent.

B. Microscopic interpretation of elastic modulii

To relate the elastic moduliiK1 and B̄ in the continuum
description to microscopic structure and interactions, o
notes that a lamellar phase is a stack of many discrete m
branes. The configurational free energy of this system
taken to be of the form

F5(
i
E dr'$ 1

2kHi1@w~si !2w~d!#%, ~3.2!

wherer'5(x,y), and the sum is taken over all membran
in the stack.

FIG. 3. The fundamental elastic distortion modes in a lame
phase: the transverse undulation mode and the longitudinal c
pression mode. For transverse wavelengths 1/q' shorter thanjK ,
the modes are incoherent, whereas, for longer wavelengths, the
a phase coherence between the membranes in the stack.
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The first term in Eq.~3.2! is the Helfrich-Canham bending
energy of a defect-free, symmetric bilayer membra
@56,57#, with k the bending rigidity andHi the mean curva-
ture of thei th membrane@45#,

Hi52“'•n' i5¹'
2ui1O@~“'ui !

2#, ~3.3!

where Eq.~2.9! was used in the last step.
The second term in Eq.~3.2! is the~free! energy of inter-

action per unit base area of two adjacent membranes
~local! separations, relative to their interaction at the ave
age membrane spacingd ~the lamellar repeat distance!.
~Only nearest-neighbor interactions in the stack are
cluded.! Since the separation between membranesi and i
11 is si5d1ui112ui , w(si) may be expanded aroundsi
5d as

w~si !2w~d!5w8~d!@ui112ui #1 1
2w9~d!@ui112ui #

2

1O~@ui112ui #
3!. ~3.4!

The linear term vanishes since, by definition,w(s) is at a
minimum for s5d.

The membrane is treated as an incompressible fluid la
of fixed thickness. The total membrane area in the samp
then a conserved quantity, unaffected by membrane und
tions. The effect of shape fluctuations is simply to reduce
number of membranes in the sample, thereby increasing
mean membrane spacingd @4,5#. If membrane compression
were allowed, Eq.~3.2! should be supplemented with an in
terfacial energy term@27#.

Inserting the leading contributions of Eqs.~3.3! and~3.4!
into Eq. ~3.2! and passing to the continuum limit, wit
(ui112ui)/d→]u/]z and dS i→*dz, we recover the har-
monic continuum Hamiltonian, Eq.~3.1!, with the identifica-
tions @58#

K15k/d, ~3.5!

B̄5dw9~d!. ~3.6!

IV. ORIENTATIONAL CORRELATIONS
IN A LAMELLAR PHASE

A. Transverse orientational correlations

With the aid of Eq.~2.11a!, the harmonic free-energy
functional ~3.1! may be Fourier decomposed as@44#

F@$û~q!%#5 1
2V(

q
~K1q'

41B̄qz
2!uû~q!u2. ~4.1!

Since the free energy is a sum of quadratic terms, the c
sical equipartition theorem tells us that the statistical aver
of each term equalskBT/2. The orientational structure facto
Eq. ~2.15! thus becomes@44#

Ĥ~q!5
kBT

V

q'
2

K1q'
41B̄qz

2
. ~4.2!

The real-space orientational correlation functionH(r ) can
now be calculated by inserting Eq.~4.2! into Eq. ~2.16!. We
shall be mainly interested in the transverse orientational c

r
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696 56BERTIL HALLE AND STEFAN GUSTAFSSON
relation functionH'(r') and the transverse orientation
structure factorĤ'(q'). These are interrelated through

H'~r'!5(
q'

Ĥ'~q'!exp~ iq'•r'!. ~4.3!

The transverse functions are related to their thr
dimensional counterparts as

H'~r'!5H~x,y,0!, ~4.4!

Ĥ'~q'!5
Lz
2p E dqzĤ~q!. ~4.5!

The integration ranges inq space arep/L'<q'<p/a in
the base plane andp/Lz<uqzu<p/d along the optic axis.
The low-wave-number cutoffs reflect the finite size of t
sample~or homeotropic domain! of width L' and thickness
Lz . The high-wave-number cutoffs acknowledge the bre
down of the continuum description on length scales com
rable to the molecular widtha and the mean membrane spa
ing d.

Converting the sum in Eq.~4.3! to an integral overq' and
integrating over the orientation of theq' vector in the base
plane, we obtain

H'~r'!5
A

2p E dq'q'Ĥ'~q'!J0~q'r'!, ~4.6!

with A the base plane area andJ0(x) the zeroth-order Besse
function. Next we calculateĤ'(q') by inserting Eq.~4.2!
into Eq. ~4.5! and integrating overqz :

Ĥ'~q'!5
kBTjK

2

pAk
arctanF ~q'jB!2/p

11~q'
2 jKjB /p!2G . ~4.7!

Substituting this result into Eq.~4.6!, the real-space orienta
tional correlation functionH'(r') is obtained after a nu
merical integration overq' .

B. Correlation lengths

In Eq. ~4.7!, we introduced two transverse correlatio
lengthsjK andjB , which characterize orientational correl
tions in a lamellar phase. They are defined as

jK5~d2K1 /B̄!1/4, ~4.8!

jB5~Lz
2K1 /B̄!1/4. ~4.9!

The two correlation lengths are related throughjB
5N1/2jK , with N5Lz /d the number of membranes in th
stack. WithN5104, typical for a lamellar sample oriente
between glass plates,jB is thus two orders of magnitud
larger thanjK . @In deriving Eq.~4.7!, we also assumed tha
N@1.# Another relation is jB5(lLz)

1/2, with l
5(K1 /B̄)

1/2 the so-called smectic penetration length@22#.
With the aid of Eqs.~3.5! and ~3.6!, one obtains the micro
scopic relationjK5„k/w9(d)…1/4.

The physical significance of the correlation lengths m
be appreciated with reference to Eq.~4.1!, showing that the
-

-
-

y

elastic free energy for a distortion mode of wave vectorq is
proportional toK1q'

41B̄qz
2. For wave vectors such tha

K1q'
4@B̄qz

2 for all qz within the rangep/Lz<uqzu<p/d,
i.e., whenq'@1/jK , we have essentially pure undulatio
modes, unaffected by membrane coupling. For wave vec
such thatK1q'

4!B̄qz
2 for all qz , i.e., whenq'!1/jB , we

have essentially pure compression modes, which do no
duce membrane curvature. The correlation lengthsjK and
jB thus partition the transverse wavelength range into th
regimes ~cf. Fig. 3!: an uncoupled, incoherent, shor
wavelength regime (1/q'!jK), a coupled, intermediate
wavelength regime with phase coherence between the di
ent membranes in the stack (jK,1/q',jB), and a long-
wavelength compressional regime (1/q'@jB).

The correlation lengthjK was first introduced within the
context of sterically interacting membranes@24–26#, where
it can be loosely interpreted as the average distance betw
points of contact between adjacent membranes. In contra
the positional correlation function̂u(0)u(r )& and the asso-
ciated positional structure factor probed by scattering exp
ments @59–62#, the orientational correlation function
^n'(0)•n'(r )& probed by nuclear spin relaxation has app
ently not been examined in detail previously. Presumably
this reason, the correlation lengthjB has not been identified
before.

The importance ofjB for spin relaxation in lamellar
phases is readily appreciated. Since the fluctuation mode
of small amplitude in the harmonic regime, they make su
stantial contributions to spin relaxation only if they are slo
which means long wavelengths. However, modes of wa
lengths exceedingjB , although slow, have vanishing orien
tational amplitude since they are essentially compressio
The correlation lengthjB thus acts as a transverse cuto
beyond which no modes contribute significantly to orien
tional correlation functions or spin relaxation rates. Provid
that jB!L' , the membrane sizeL' is therefore irrelevant.
In contrast, sincejB}Lz

1/2, the thickness of the membran
stack does influence orientational fluctuations of long wa
lengths and at low frequencies.

C. Orientational correlation for a free membrane

In the free-membrane limit (B̄50), Eq. ~4.8! shows that
jK diverges, so that Eqs.~4.6! and ~4.7! yield @26#

H'~r'!5
kBT

2pk E dq'

1

q'

J0~q'r'!5
kBT

2pk
lnS L'

pr'
D ,

~4.10!

where r'@a/p was assumed in the last step. The mea
square director fluctuation of a free membrane is obtained
settingr'50 in the integrand of Eq.~4.10!, with the result
@2#

^n'
2 &5H'~0!5

kBT

2pk
ln~L' /a!. ~4.11!

The logarithmically slow decay of the orientational corr
lation function~4.10! and the logarithmically divergent ther
modynamic limit (L'→`) of the mean-square fluctuatio
~4.11! demonstrate that a free membrane does not pos
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56 697ORIENTATIONAL CORRELATIONS AND SPIN . . .
true long-range orientational order@26,58#. While the har-
monic approximation breaks down as^n'

2 & approaches unity
it can be shown that a free membrane, no matter how r
locally ~largek!, is crumpled on length scales larger than t
free-membrane persistence length@26,58#

jP5a expS 4pk

3kBT
D . ~4.12!

For a relatively stiff membrane withk@kBT, as for a phos-
pholipid bilayer,jP is of astronomical dimensions.

D. Orientational correlation for coupled membranes

In contrast to a free membrane, a membrane tha
coupled to its neighbors in a lamellar phase exhibits t
long-range orientational order, i.e., the harmonic theory p
dicts a finite ^n'

2 & even in the thermodynamic limi
(L' ,Lz→`). Equations~4.6! and ~4.7! yield a closed-form
result for ^n'

2 & @5#, which, in the physically relevant regim
wherejK@a andjB!L' , reduces to

^n'
2 &5

kBT

4pk
@112 ln~p1/2jK /a!#, ~4.13!

which is independent of sample size. It is of interest to co
pare this result with the corresponding one for a nem
phase. In the one-constant approximation@22#,

^n'
2 &nematic5

kBT

p2K
qc , ~4.14!

whereK is the elastic constant andqc a continuum cutoff.
Taking qc5p/d, we see that the director fluctuation amp
tude is comparable in nematic and lamellar~or smectic!
phases if the elastic moduliiK andK1 in the two phases are
similar. This is usually the case in thermotropic@22# as well
as in lyotropic@5,63# liquid crystals, the typical range bein
1–10 pN.

Figure 4 shows the transverse orientational correla
functionH'(r'), calculated numerically from Eqs.~4.6! and

FIG. 4. Transverse orientational correlation function,H'(r'),
calculated from Eqs.~4.6! and ~4.7! with N5104 and p(jK /a)

2

values as indicated. The dashed curve shows an exponential c
lation function with decay lengthjK /p

1/2.
id

is
e
-

-
ic

n

~4.7! with the lower integration limitq'5p/L' extended to
q'50 ~permissible ifjB!L'!. Although clearly not expo-
nential,H'(r') has essentially decayed to zero atr'5jK ,
justifying the interpretation ofjK as a transverse orienta
tional correlation length@26#. However,H'(r') does not
approach zero monotonically, but first passes through a n
tive region with anticorrelated membrane normals, shown
a magnified scale in Fig. 5. This coherent feature is a sig
ture of coupled membranes, not present for a free membr
@When examining the large-r' behavior ofH'(r') in Eq.
~4.10!, we must, of course, ensure thatL'.r' .#

The physical significance of the different regimes in t
decay ofH'(r') is as follows. On transverse length scal
up to r''jK , the loss of orientational correlation in a give
membrane is affected only by interactions with the two a
jacent membranes. In this regime, the behavior ofH'(r') is
essentially the same as for a fluid membrane confined
tween two rigid plates@26#. The large initial decay of
H'(r') ~cf. Fig. 4!, as well as the first negative peak~cf. Fig.
5!, are therefore independent of the numberN of membranes
in the stack. In the region of the negative peak, wherer' is
still of orderjK , n'(0) andn'(r') have a slight preference
for anti-parallel orientation. This is, indeed, the expected
havior after the first ‘‘collision’’ between adjacent mem
branes, where the ‘‘wandering’’ membranes change dir
tion.

On transverse length scales betweenjK andjB , the inter-
acting membranes exhibit coherent fluctuations~cf. Fig. 3!,
giving rise to theN-dependent negative feature inH'(r')
~cf. Fig. 5!. This regime terminates atr''jB , because
modes of longer wavelengths are essentially compressio
and, hence, cannot affect membrane orientation. The des
tion of orientational correlations in a lamellar stack of me
branes thus involves two distinct length scales:jK and jB ,
related to the loss of orientational correlations associa
with incoherent short-wavelength modes (jK) and coherent
long-wavelength modes (jB). This is perhaps seen more d
rectly in the transverse orientational structure fac

rre-

FIG. 5. Long-range behavior of the transverse orientational c
relation function,H'(r'), calculated from Eqs.~4.6! and~4.7! with
p(jK /a)

255000 andN values as indicated. To emphasize t
weak, long-ranged tail inH'(r'), it has been multiplied byr'

~proportional to the area element in the base plane!. The small-scale
roughness results from the short-wavelength cutoffa.
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698 56BERTIL HALLE AND STEFAN GUSTAFSSON
Ĥ'(q'), which governs the mean amplitude of transve
orientational modes~cf. Fig. 6!. SinceĤ'(0)50 ~for finite
N!, it follows that the integral ofH'(r') over the base plane
must vanish. Although not directly evident in the semil
plot of Fig. 5, the integrals overH'(r') are independent o
N and equal in magnitude to the integral over the (N-
independent! positive part ofH'(r') in Fig. 4.

V. MAGNETIC-FIELD EFFECTS

A. Magnetic coherence length

As a consequence of the anisotropy of the molecular
magnetic susceptibility tensor, an external magnetic field
erts a significant torque on a sufficiently large part of a
system possessing long-range orientational order. In
presence of a magnetic field, the elastic free-energy fu
tional ~3.1! of a lamellar phase must be supplemented wit
magnetic term@34,64#

FM@u~r !#52 1
2 E dr ~4p/m0!Dx@B0•n~r !#2

5 1
2 ~4p/m0!DxB0

2E dr

3Fcos~2b!S ]u

]xD
2

1cos2bS ]u

]yD
2G , ~5.1!

wherem0 is the vacuum permeability,Dx5xz2x' the mac-
roscopic diamagnetic susceptibility anisotropy, andB0 the
uniform external magnetic field.~We use SI units through
out.! To obtain the second form in Eq.~5.1!, we have in-
voked the harmonic approximation~2.9! and introduced the
angleb ~cf. Fig. 1! between the optic axis (z) and the mag-
netic field ~which, by convention, is in thex-z plane@34#!.

Fourier expanding the displacement fieldu(r ) in Eq. ~5.1!
and applying the equipartition theorem toF@$û(q)%#
1FM@$û(q)%#, we obtain, for the orientational structure fa
tor in the presence of a magnetic field,

FIG. 6. Transverse orientational structure factor,Ĥ'(q'), for a
stack ofN ~as indicated! coupled membranes, calculated from E
~4.7!. The ordinate is in units ofkBTjK

2 /(2Ak).
e

-
x-
y
e
c-
a

Ĥ~q!5
kBT

V

q'
2

K1q'
2 @q'

21jM
22f ~w;b!#1B̄qz

2
, ~5.2!

where we introduced the angular function

f ~w;b!5sgn~Dx!@cos2w cos~2b!1sin2w cos2b#,
~5.3!

with w the angle between thex axis and theq vector. Fur-
ther, jM is the magnetic coherence length@44#, defined as

jM5S m0

4p

K1

uDxu D
1/2 1

B0
. ~5.4!

The physical significance of the magnetic coherence len
is as follows: for a spatial region of linear dimension of ord
jM or larger, the net magnetic torque is stronger than
elastic torque that maintains the macroscopic orientation
duced by the boundary conditions, and, hence, the optic
of that region tends to reorient so as to minimize the m
netic energy. This behavior is well known for nemat
phases, which are readily aligned by moderately strong m
netic fields@22#.

B. Magnetic-field effect on a free membrane

In the absence of membrane coupling, a lamellar ph
would respond to a magnetic field in much the same way
a nematic phase. For example, a magnetic field along
optic axis (b50) of a diamagnetically positive (Dx.0)
lamellar phase strongly suppresses director fluctua
modes of wavelengths longer than the magnetic cohere
length. Inserting Eq.~5.2! with B̄50 into Eq.~4.5!, and as-
suming thatLz@d, we obtain, fora!r'!L' ,

H'~r'!5
kBT

2pk
K0~r' /jM !, ~5.5!

and, fora!jM!L' ,

^n'
2 &5

kBT

2pk
ln~pjM /a!. ~5.6!

A comparison of Eqs.~5.6! and ~4.11! shows that, in the
presence of a magnetic field~which might be the geomag
netic field!, even a free membrane possesses true long-ra
orientational order. The modified Bessel function in Eq.~5.5!
goes as ln(jM /r') for r'!jM and as (pjM/2r')

1/2exp
(2r' /jM) for r'@jM . On length scales much shorter tha
the magnetic coherence length, the orientational correla
thus decays logarithmically as in the field-free case,
~4.10!, whereas, on length scales much longer thanjM ,
H'(r') exhibits an essentially exponential decay withjM
playing the role of a transverse orientational correlat
length, in close analogy with the~three-dimensional! nematic
case@22#.

C. Magnetic-field effect on coupled membranes

A lamellar phase differs fundamentally from a nema
phase in that it possesses~quasi! long-range positional orde
in one dimension. In the absence of defects, the repuls
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56 699ORIENTATIONAL CORRELATIONS AND SPIN . . .
between adjacent membranes~or, at least, their excluded vol
ume! strongly opposes the magnetic torque, which, in
absence of membrane coupling, would tend to realign
optic axis. In fact, under most conditions the magnetic-fi
effect can be neglected for lamellar phases. To show this
rewrite the orientational structure factor in Eq.~5.2! as

Ĥ~q!5
kBTjK

2

VK1

x

x21~jK /jM !2f ~w;b!x1~qzd!2
.

~5.7!

Since the denominator is a quadratic polynomial inx
5(q'jK)

2, it follows that the magnetic term~linear inx! can
be neglected if, for allw and qz ,

1
2(jK /jM)

2u f (w;b)u
!uqzdu. Sinceu f (w;b)u<1 anduqzdu<p/N, the magnetic-
field effect on the orientational structure factor can theref
be neglected if

jM@jB /~2p!1/2. ~5.8!

The physical basis of this condition is clear. Only distorti
modes with transverse wavelengths in the rangejM!1/q'

!jB can be magnetically influenced; at shorter waveleng
the magnetic torque cannot compete with the elastic torq
at longer wavelengths the modes do not affect membr
orientation. If inequality~5.8! is satisfied, such a range doe
not exist. In terms of the magnetic-field strengthB0 , condi-
tion ~5.8! reads

B0
2!

m0@kw9~d!#1/2

2DxLz
. ~5.9!

D. Broken symmetry

When condition~5.8! is violated, we must recognize tha
an external magnetic field generally breaks the intrin
uniaxial symmetry of a lamellar phase. As is evident fro
the unsymmetrical dependence onx andy in Eq. ~5.1!, this is
the case whenever the magnetic field and the optic axis
not collinear (bÞ0). As a consequence of the broken sy
metry, the orientation dependence of the lab-frame spec
densities is no longer given by Eq.~2.3!. In fact, there are
now five, rather than three, distinct irreducible crystal-fra
spectral densities@34,36#. In the harmonic regime, howeve
director fluctuations still contribute only a single term to t
secular lab-frame spectral density, as in Eq.~2.6!, but the
time correlation function is now@34#

G~t!53^nx~0!nx~t!&2^ny~0!ny~t!&, ~5.10!

which reduces to Eq.~2.8! in the field-free case. Equatio
~2.14! must therefore be generalized to

G~t!5(
q

~4 cos2 w21!Ĥ~q!F~q,t!. ~5.11!
e
e
d
e

e
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e

c

re
-
al

e

Under conditions whereF(q,t)5exp(2q'
2D't) ~cf. Sec.

VI !, the relative magnetic-field effect on the adiabatic sp
tral density is obtained from Eqs.~5.2! and ~5.11! as

J~0;B0!

J~0;0!
5

4

p2lnN E
0

p/2

dw~4 cos2w21!

3E
1

N

dy
Fp22arctan

h2f

~y22h4f 2!1/2G
~y22h4f 2!1/2

,

~5.12!

with f as defined in Eq.~5.3! andh5jB /(jMA2p) a field
parameter proportional toB0 . Equation~5.12! holds for h
,1. Most lamellar phases haveDx,0, so that the magnetic
free energy is minimized with the optic axis perpendicular
the magnetic field. The configurationb5p/2 is thus stable,
whereasb50 is metastable. As expected, we see in Fig
that the magnetic field suppresses director fluctuations
b5p/2, whereas it enhances them forb50. It should be
noted that, since the field effect depends onb, the lab-frame
spectral density has an implicit orientation dependence, a
from the explicit one displayed in Eq.~2.3!.

The divergence ath51 of the director fluctuations in the
metastable configuration~b50 for Dx,0 or b5p/2 for
Dx.0! signals a breakdown of the harmonic theory. At t
critical magnetic field (h51), the lamellar phase undergoe
a transition to a buckled phase where the ground-state
figuration of the fluid membranes is no longer flat but exh
its a ~static! periodic undulation of wavelength (2p)1/2jB
and amplitude of orderjK

2 /d @64#. This buckling instability,
or Helfrich-Hurault transition@22#, results from the interplay
of magnetic and elastic torques and boundary conditio
The stability conditionh,1, or (2p)1/2jM.jB , may be
compared with the analogous condition,pjM.Lz , for sta-
bility with respect to the Fre´edericksz transition in a nemati
phase@22#. SincejM is typically only one order of magni-
tude larger in nematic phases whileLz@jB , it is clear that

FIG. 7. Magnetic-field effect on the adiabatic spectral dens
J(0) in a lamellar phase withDx,0 and the field parallel (b
50) or perpendicular (b5p/2) to the optic axis.J(0) was calcu-
lated from Eq.~5.12! with N5104.
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700 56BERTIL HALLE AND STEFAN GUSTAFSSON
magnetic-field effects are much more important in nema
phases than in lamellar phases.

VI. DYNAMICS OF ORIENTATIONAL FLUCTUATIONS
IN A LAMELLAR PHASE

A. Diffusion on a fluctuating membrane

On the supermolecular length and time scales of inte
here, the single-particle motion of the spin-bearing molec
obeys the classical diffusion equation. The single-part
correlation function in Eq.~2.17! can then be identified a
the spatial Fourier transform of the Green’s function for t
diffusion equation, i.e.,

FS~q,t!5exp@2~q'
2D'

S1qz
2Dz

S!t#, ~6.1!

whereD'
S andDz

S are the self-diffusion coefficients for mo
tion in the base plane and along the optic axis, respectiv
We assume that diffusion across the membranes is neglig
slow, i.e., we setDz

S50. It can be shown that the effect o
longitudinal diffusion onJ(0) can be neglected if

Dz
S

D'
S !

d2

4jK
2

lnN

ln~L' /a!
. ~6.2!

This inequality may not be satisfied in thermotropic smec
A phases@65#, but should hold in lyotropic lamellar phase
free from microscopic structural defects@66,67#.

The transverse self-diffusion coefficientD'
S in Eq. ~6.1!

refers to projected displacements in the base plane. In
eral,D'

S is smaller than the curvilinear self-diffusion coeffi
cientD0 that characterizes molecular motion on the undu
ing membrane. If membrane undulation is much faster t
diffusion ~the limit of annealed disorder!, the base-plane dif-
fusion coefficient is@68#

D'
S5~12 1

2 ^n'
2 &!D0 . ~6.3!

In the opposite~more realistic! limit of slow undulations
~quenched disorder!, D'

S is in general smaller than in th
annealed limit. Within the harmonic regime, however, t
results forD'

S in the two limits coincide@68#. It appears,
therefore, that the projected diffusion process is independ
of the dynamics of membrane undulation, as long as
undulation amplitude is sufficiently small~harmonic regime!,
justifying the factorization of the total correlation functio
F(q,t) in Eq. ~2.22!. Such a factorization is not possible fo
a strongly fluctuating membrane, as can be shown explic
for one-dimensional models@69#.

B. Hydrodynamic modes in a lamellar phase

In the general case, the hydrodynamics of a lame
phase features seven coupled modes@22,70#. Nuclear spin
relaxation, however, is only affected by low-frequen
(!MHz) modes that modulate the membrane curvature.
the low frequencies of interest here, the system can be
garded as incompressible and athermal, whereby only t
coupled modes have to be retained@23,71#. In the special
case of a purely transverse wave vector (q5q'), these in-
clude two high-frequency modes~transverse shear and mem
c
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brane peristaltic!, which can be disregarded, and a low
frequency undulation mode with a characteristic frequen
@44#

G5
k

hd
q'
2 , ~6.4!

where h is an effective shear viscosity. In the undulatio
mode, each membrane in the stack fluctuates independe
from the others, unaffected by the direct membrane coup
w(s). There is, however, a hydrodynamic coupling betwe
adjacent membranes~at a mean distanced!. This distin-
guishes the undulation mode from the single-membr
~Zimm! mode,G5kq'

3 /(4h), where only the hydrodynamic
self-interaction is present@21#. In a lamellar phase, the
single-membrane mode is relevant only forq'd@1 @72,73#
and, like other high-frequency subhydrodynamic modes@74–
76#, is of no consequence for spin relaxation.

As expected, the direct membrane interaction comes
play for oblique wave vectors (qzÞ0). In this more genera
case, the dominant low-frequency mode, referred to as
baroclinic mode, has a dispersion relation of the fo
@23,77,78#

G5
k

hd
q'
2
q'
41qz

2d2/jK
4

q41aqz
2/d2

. ~6.5!

For qz50, this baroclinic mode degenerates into the pu
undulation mode~6.4!. For q'jK!qzd!1, it reduces to the
so-called slip mode@23#

G5
kd3

ahjK
4 q'

25
d2

ah
B̄q'

2 , ~6.6!

where Eq.~4.8! was used in the last step. In contrast to t
undulation mode, the slip~and baroclinic! mode involves a
lateral flow of the intermembrane fluid as the membra
separation is modulated. This gives rise to thea term in Eq.
~6.5!. Using a discrete-membrane-stack model of the lam
lar phase, one obtainsa512 when the membrane thicknes
is small compared tod @23,73#.

Some remarks are in order regarding the microscopic
terpretation of the phenomenological coefficients that app
in the hydrodynamic analysis. First, the effect of membra
stretching has been ignored. Although the membranes w
taken to be locally incompressible, a corrugated membr
has a finite lateral compressibility@79#, which leads to a
slight slowing down of the modes@77,80#. Second, mem-
brane corrugation on short wavelengths also reduces
bending rigidity, leading to aq'-dependent logarithmic
renormalization ofk @27,81#. For long wavelengths (q'jK
!1), the effectivek should thus be slightly smaller than th
bare ~short-wavelength! rigidity @5#. In principle, the mode
relaxation rateG should also be renormalized. A recent stu
shows, however, that the single-membrane mode does
renormalize@79#. Third, most hydrodynamic treatments o
stacked-membrane models have focused on dilute lam
phases, where the membrane spacingd is large compared to
the membrane thickness. If this is not the case, as in m
phospholipid-water systems, the hydrodynamic~and equilib-
rium! parameters must be interpreted accordingly@23,71,82#.
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According to the fluctuation-dissipation theorem, t
characteristic mode frequencyG emerging from a linearized
hydrodynamic treatment can be identified with the inve
correlation time of the displacement-mode time correlat
function in Eq.~2.18!. By combining Eqs.~2.22!, ~6.1!, and
~6.5!, we can thus express the total mode correlation func
as

F~q,t!5exp@2q'
2D'~q!t#, ~6.7!

with an apparent, wave-vector-dependent, transverse ‘‘di
sion coefficient’’D'(q) given by

D'~q!5D'Fd1~12d!
s4~r21z2!

~s2r1pz2!21az2G , ~6.8!

with the reduced variablesr5(q'jK)
2/p and z5qzd/p.

Further, we have introduced the relative diffusion coefficie

d5D'
S/D' , ~6.9!

with D'5D'
S1D'

C andD'
C5k/(hd). Finally, we have de-

fined the coupling parameter

s5d/jK . ~6.10!

For strongly coupled membranes, the patch lengthjK is short
ands large, and vice versa.

If the membrane coupling is not too strong (s,1), the
baroclinic mode can be several orders of magnitude slo
in the slip limit ~where coupling is most strongly manifeste!
than in the undulation limit~cf. Fig. 8!. At low frequencies,
the spectral density functionJ(v) in Eq. ~2.23! will there-
fore be profoundly affected by membrane coupling, not o
via the static orientational structure factorĤ(q), but also via
the dynamic structure factorS(q,v) resulting from Eqs.
~2.24! and ~6.7!.

VII. TIME CORRELATION FUNCTION AND SPECTRAL
DENSITY IN THE FAST-DIFFUSION LIMIT

We are now fully equipped to address the central issue
this work, the calculation of the orientational time correlati

FIG. 8. Wave-vector dependence of the inverse of the effec
transverse diffusion coefficientD'(q), calculated from Eq.~6.8!,
with d50 ~no molecular diffusion! and the indicated values of th
coupling parameters.
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functionG(t) in Eq. ~2.8! and the associated spectral dens
functionJ(v). Unless otherwise noted, we assume that c
dition ~5.8! is satisfied so that the magnetic-field effects d
cussed in Sec. V can be ignored. In this section, we cons
the limiting case where molecular diffusion is much fas
than collective membrane dynamics. We then haveD'

S

@D'
C , so thatd51 in Eq. ~6.8! and

F~q,t!5exp~2q'
2D'

St!. ~7.1!

For the following development, it is convenient to intro
duce four characteristic frequencies. Two are associated
the transverse cutoffs

va5p2D'
S/a2, ~7.2!

vL5p2D'
S/L'

2 , ~7.3!

and two are related to the orientational correlation length

vK
S5pD'

S/jK
2 , ~7.4!

vB5pD'
S/jB

2. ~7.5!

From Eqs.~4.8! and ~4.9! it follows that vB5vK
S/N, i.e.,

these frequencies typically differ by four orders magnitude
more.

A. Time correlation function

Inserting Eq.~7.1! into Eq. ~2.21!, converting the sum
overq to an integral over (q' ,w,qz), and making use of Eq
~4.5!, we obtain

G~t!5
A

2p E dq'q'Ĥ'~q'!exp~2q'
2D'

St!. ~7.6!

As seen from Fig. 6,Ĥ'(q') goes to zero forq'!1/jB . As
long asjB!L' , we can therefore extend the lower integr
tion limit in Eq. ~7.6! from p/L' to 0, makingG(t) inde-
pendent of membrane size (L'). This is a direct conse-
quence of membrane coupling, which makes t
orientational correlation functionH'(r') vanish forr'.jB
~cf. Fig. 5!. In contrast, for a free membrane,H'(r') decays
only logarithmically@cf. Eq. ~4.10!#, wherebyG(t) depends
on L' at all times. In particular,G(0)} lnL' @cf. Eq. ~4.11!#
and J(0)}L'

2 @6#. For a free membrane, however, th
magnetic-field effect onĤ'(q') cannot be ignored and thi
will reduce, but not eliminate, the dependence ofG(t) on
membrane size@6#.

We are only interested in the behavior ofG(t) on time
scalest@1/va , where diffusion-induced director fluctua
tions are slower than local molecular motions. Provided t
jK@a, we can then extend the upper integration limit in E
~7.6! from p/a to `. InsertingĤ'(q') from Eq. ~4.7! into
Eq. ~7.6!, and integrating overq' ~from 0 to`!, we find

G~t!5
kBT

4pk

1

vK
St

@g~vBt!2g~vK
St!#, ~7.7!

with the auxiliary functiong(x) defined in terms of the sine
and cosine integrals as

e
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g~x!5Ci~x!sinx2@Si~x!2p/2#cosx. ~7.8!

Using the appropriate expansions of the auxiliary funct
g(x) @83#, we can identify three distinct regimes in the dec
of G(t). In the short-time regime, 1/va!t!1/vK

S , Eq.
~7.7! reduces to

G~t!5
kBT

4pk
@12g2 ln~vK

St!#, ~7.9!

whereg50.5772 . . . isEuler’s constant. In this regime, th
molecule has not yet diffused out of the initial membra
patch of areajK

2 , andG(t) is nearly the same as for a fre
membrane of sizeL'5jK .

In the intermediate-time regime, 1/vK
S!t!1/vB , Eq.

~7.7! yields

G~t!5
kBT

8kvK
St

, ~7.10!

and in the long-time regime,t@1/vB ,

G~t!5
kBT

4pkvK
SvBt2

. ~7.11!

Membrane coupling is strongly manifested in both these
gimes,G(t) being proportional tojK

2 or jK
2 jB

2, respectively.
Figure 9 shows the decay ofG(t), illustrating the accuracy
of Eqs.~7.9!–~7.11! in their respective regimes.

B. Asymptotic behavior of G„t…

The asymptotic decay in Eq.~7.11!, G(t);t22, is some-
what counterintuitive, since time correlation functions i
volving translational diffusion inD unbounded dimension
generally have the same asymptotic form as the diffus
propagator, i.e.,G(t);t2D/2. This is the case for orienta
tional fluctuations due to one-dimensional diffusion along

FIG. 9. Decay of the time correlation functionG(t) in the fast-
diffusion limit. The solid curve was obtained by numerical integ
tion of Eq. ~7.6! over the range 0<q'<p/a. On this scale, it is
indistinguishable from the analytical result in Eq.~7.7!. The dashed
curves correspond to the limiting results. Eqs.~7.9!–~7.11!. The
parameter values areN5104 andp(jK /a)

25100.
n

-

n

a

semiflexible space curve@84,85#, or three-dimensional diffu-
sion in a nematic phase in the presence of a magnetic
@85,86#, as well as for modulation of the internuclear vect
by relative translational diffusion in two-dimensional sy
tems@30–32#.

To identify the physical basis for the unexpect
asymptotic behavior ofG(t), we return to Eq.~7.6!. We
note that, for larget, only smallq' values contribute to the
integral. Taylor expandingĤ'(q') aroundq'50 and per-
forming the resulting standardq' integrals, we obtain

G~t!5
A

4p F Ĥ'~0!~D'
St!211

Ap

2
Ĥ'8 ~0!~D'

St!23/2

1 1
2 Ĥ'9 ~0!~D'

St!221•••G , ~7.12!

where a prime signifies differentiation with respect toq' .
From Eq. ~4.7!, we obtain Ĥ'(0)50, Ĥ'8 (0)50, and
Ĥ'9 (0)52kBTjK

2 jB
2/(p2Ak), which, when inserted into Eq

~7.12!, reproduces the long-time limit, Eq.~7.11!. To obtain
G(t);t21, we must clearly haveĤ'(0)Þ0, which would
be the case for an exponentially decaying orientational c
relation functionH'(r'). We can conclude, therefore, tha
the faster asymptotic decay ofG(t) is a consequence of th
anticorrelation of membrane normals in the rangejK,r'
,jB ~cf. Fig. 5!, induced by coherent undulations of man
coupled membranes in a multilamellar stack~cf. Sec. IV D!.

It is interesting to note that the asymptoticG(t);t22

decay in Eq.~7.11! applies only to a lamellar stack with
finite number of membranes. In the limitN→`, also
jB→`, so the regime t@1/vB does not exist. The
asymptotic behavior is now given by Eq.~7.10!, i.e., we have
G(t);t21. This result also emerges from Eq.~7.12!, since,
for N→`, Eq. ~4.7! yields

Ĥ'~0!5
kBT

A

jK
2

2k
. ~7.13!

According to the fluctuation-dissipation theorem@1#, the
quantityjK

2 /(2k) may be interpreted as an orientational su
ceptibility, which is nonzero only in the limitN→`. The
slower asymptotic decay ofG(t) for an infinite stack of
membranes, and the consequent logarithmic divergenc
J(0), aremanifestations of the well-known Landau-Peie
instability: for any three-dimensional system exhibiting on
dimensional periodicity, thermal fluctuations destroy t
long-range order in the thermodynamic limit@1#. Although
theoretically illuminating, these considerations are of lit
practical concern. First, real systems are finite. Second, in
presence of an external magnetic field~which could be the
NMR field or the geomagnetic field!, condition ~5.8! will
ultimately be violated asN increases. When this happens, t
magnetic coherence lengthjM replacesjB as the transverse
cutoff, again makingĤ'(0)50. Now, however, we have
Ĥ'8 (0)Þ0, leading, with Eq.~7.12!, to

G~t!;
kBT

16kvK
SvM

1/2t3/2
, ~7.14!

-
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with vM5pD'
S/jM

2 . This result pertains to the stable co
figuration withb50 andDx.0. Third, on sufficiently long
time scales, longitudinal diffusion cannot be ignored (Dz

S

Þ0); this would again lead toG(t);t23/2. Fourth, if the
membranes are laterally bounded~finite L'!, all terms in Eq.
~7.12! include exponential factors andG(t);exp(2vLt)/t.
For a typical sample, however,jB!jM ,L' and then the
Landau-Peierls instability and the effects of magnetic fie
longitudinal diffusion, and finite membrane dimensions c
all be neglected.

C. Spectral density function

The spectral density function is obtained from Eqs.~2.7!
and ~7.6! as

J~v!5
A

2pD'
S E dq'

q'
3 Ĥ'~q'!

q'
41~v/D'

S!2
. ~7.15!

Substituting Ĥ'(q') from Eq. ~4.7! and integrating over
q' from 0 to `, which is permissible whenjK@a, jB
!L' , andv!va , we obtain the surprisingly simple resu
@6,39#

J~v!5
kBT

8kvK
S lnS v1vK

S

v1vB
D . ~7.16!

If the restrictionv!va is removed, the ln term is supple
mented with a term (2/p)(vK

S/v)arctan(va /v), yielding a
high-frequency dispersion step that is always negligible co
pared to that produced by local molecular motions. At low
frequencies,v!va , the arctan term adds a constant con
bution to J(v) that is generally~when jK@a! negligible
compared to that coming from the ln term.

The adiabatic limit of Eq.~7.16! is

J~0!5
kBT

8kvK
S lnN. ~7.17!

As noted in Sec. VII B, the logarithmic divergence ofJ(0)
asN→` is a manifestation of the Landau-Peierls instabil
@1#. This connection is made more explicit by noting that

J~0!5^u2&/D'
S , ~7.18!

which follows by combining Eqs.~2.7!, ~2.19!, ~2.21!, and
~7.1!. This peculiar result, relating the adiabatic spectral d
sity associated with the time correlation function~2.8! for
membrane orientation to the mean square fluctuation
membrane position, is simply a consequence of cance
q'
2 factors from Eqs.~2.19! and~7.1!, each originating from
two transverse space derivatives.

Like most other results in this section, Eq.~7.17! assumes
that condition~5.8! is satisfied. In the presence of a magne
field, however weak, condition~5.8! is violated for suffi-
ciently largeN. When the magnetic field is taken into a
count, J(0) no longer diverges forN→`. For b50 and
Dx.0, we obtain

J~0!5
kBTjK

2

4pk
ln~2p1/2jM /jK!, ~7.19!
,
n

-
r
-

-

in
g

provided thatjK!jM!L' ,Lz .
By expanding the logarithm in Eq.~7.16!, we can identify

three distinct frequency regimes in the dispersion ofJ(v),
analogous to the three time regimes in the decay ofG(t). In
the low-frequency regime,v!vB , we have simplyJ(v)
'J(0). In the intermediate-frequency regime,vB!v
!vK

S , Eq. ~7.16! reduces to

J~v!5
kBT

8kvK
S ln~vK

S/v!. ~7.20!

As expected, membrane coupling is manifested at all
quencies below the diffusional patch frequencyvK

S . At these
frequencies,J(v) is dominated by the 1/t decay ofG(t) on
the intermediate timescale 1/vK

S!t!1/vB . Indeed, the adia-
batic spectral density can be expressed as

J~0!5E
1/vK

S

1/vB
dt G~t!, ~7.21!

which, after substitution ofG(t) from Eq. ~7.10!, leads to
Eq. ~7.17!.

At frequencies exceeding the patch frequency,vK
S!v

!va , Eq. ~7.16! reduces to the same form as for a fr
membrane,

J~v!5
kBT

8kv
. ~7.22!

Indeed, if the compressional term in Eq.~3.1! is omitted, one
obtains, forv!va @6#,

J~v!5
kBT

4pkv
arctan~v/vL!. ~7.23!

For v@vL , this reduces to Eq.~7.22!, as first shown by
Marqusee, Warner, and Dill@19#.

FIG. 10. Dispersion of the spectral density functionJ(v) in the
fast-diffusion limit. The thick solid curve was obtained by nume
cal integration of Eq.~7.15! over the range 0<q'<p/a, and the
thin solid curve is the analytical result in Eq.~7.16!. The dashed
curves correspond to the limiting results, Eqs.~7.20! and ~7.22!.
The parameter values areN5104 andp(jK /a)

25100.
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704 56BERTIL HALLE AND STEFAN GUSTAFSSON
Figure 10 shows the full dispersion ofJ(v), illustrating
the accuracy of Eqs.~7.20! and ~7.22! in their respective
regimes. On an absolute scale, not normalized byJ(0),
J(v) is the same for coupled and free membranes at h
frequencies,v@vK

S . At lower frequencies, however,J(v)
becomes much larger for the free membrane. For the typ
parameter valuesN5104 and L' /jK5106, the adiabatic
spectral densityJ(0) is some ten orders of magnitude larg
for a free membrane than for a coupled membrane in a m
tilamellar stack.

The 1/v dispersion law in Eq.~7.22! is a truly remarkable
result. It tells us that, in the high-frequency regime, the s
relaxation rate~proportional toJ(v)! is entirely independen
of the rate of orientational fluctuations. This counterintuiti
result may be understood by noting that the diffusion coe
cient D'

S enters via the mode correlation function
exp(2q'

2D'
St). Any dependence ofG(t) or J(v) on D'

S

must therefore appear in the form of one or more charac
istic frequencies}D'

S/j2, with j one of the five correlation
or cutoff lengths that characterize the transverse ela
modes of a lamellar phase:L' , jM , jB , jK , anda ~usually
decreasing in that order!. A free membrane, however, pos
sesses no intrinsic characteristic length, apart from the cu
lengthsa andL' . As a result of this peculiar property of
free membrane,J(v) must be independent ofD'

S in the fre-
quency rangevL!v!va . In the presence of a magnet
field, however, the magnetic coherence lengthjM introduces
the magnetic frequencyvM5pD'

S/jM
2 , and Eq.~7.22! is re-

placed by~for b50 andDx.0!

J~v!5
kBT

8kv

11S vM

pv D lnS vM

pv D
11S vM

pv D 2 . ~7.24!

For vM!v!va , we recover Eq.~7.22!, whereas, forvL
!v!vM ,

J~v!5
kBT

4kvM
lnS vM

pv D . ~7.25!

VIII. TIME CORRELATION FUNCTION AND SPECTRAL
DENSITY FOR DIFFUSION AND COUPLED

MEMBRANE UNDULATIONS

The results of Sec. VII are strictly valid only in the fas
diffusion limit, whereD'

S@D'
C . When the observed nuclea

spin resides in a large molecule, such as a phosphol
director fluctuations are due mainly to collective membra
undulation, and the slow-diffusion limit (D'

S!D'
C) is more

appropriate. In the following, we consider the general ca
without any restrictions on the relative magnitudes ofD'

S

andD'
C . The mode correlation function is then given by E

~6.7!, with the wave-vector-dependent ‘‘diffusion coeffi
cient’’ D'(q) in Eq. ~6.8!.
h

al

l-

n
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e

e,
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A. Adiabatic spectral density

In place of Eq.~7.18!, we now have

J~0!5(
q

^uû~q!u2&
D'~q!

. ~8.1!

Substituting^uû(q)u2&5Ĥ(q)/q'
2 from Eq. ~4.2! andD'(q)

from Eq. ~6.8! and integrating overq space, we obtain, for
jK@a andjB!L' ~so that theq' limits can be set to 0 and
`!,

J~0!5
kBT

8kvKd H lnN2
2

p
~12d!s2

3E
1/N

1

dz
arctan@D/~pdz!#

Dz J , ~8.2!

with vK5p(D'
S1D'

C)/jK
2 and

D5@da1~12d!~s41dp2z2!#1/2. ~8.3!

The remaining parameters in Eq.~8.2! were defined in con-
nection with Eq. ~6.8!. In the fast-diffusion limit (D'

S

@D'
C), Eq. ~8.2! reduces to Eq.~7.17!, i.e.,

J~0!5
kBTjK

2

8pkD'
S lnN. ~8.4!

In the slow-diffusion limit (D'
S!D'

C), Eq. ~8.2! yields

J~0!5
kBTjK

6

8pkd4D'
C Fp2

4
12s21 1

2 ~a1s4!lnNG . ~8.5!

Figure 11 reveals a dramatic effect on the adiabatic sp
tral densityJ(0) of dynamic membrane coupling via the o
lique (qzÞ0) baroclinic distortion modes. The diffusivity
ratio d is varied here, but the sumD'

S1D'
C is kept constant.

We compareJ(0), calculated from Eq.~8.2!, with a fictitious

FIG. 11. The adiabatic spectral densityJ(0), calculated from
Eq. ~8.2!, relative to the fictitious spectral densityJ'(0), duesolely
to transverse modes. The parameterd5D'

S/(D'
S1D'

C) is varied at
fixed D'

S1D'
C . The other parameter values areN5104, a512,

ands as indicated.
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spectral densityJ'(0), corresponding to purely transvers
modes and thus given by Eq.~8.4! with D'

S replaced by
D'
S1D'

C .
If membrane coupling is weak (s!1), the oblique baro-

clinic modes, being affected only by hydrodynamic intera
tions, are very slow~cf. Fig. 8!. In this weak-coupling re-
gime, collective membrane fluctuations can have
enormous effect onJ(0), butthis effect is independent of th
rate of the membrane fluctuations. In fact, for sufficien
small s, J(0) is given by Eq.~8.4!, with no reference to
D'
C ~cf. the uppermost curve in Fig. 11!. @Note that the limit

s50 cannot be taken without violating the conditionjB
!L' , used in deriving Eq.~8.2!, which requires thats
@AdLz/L' .# This somewhat paradoxical result can be u
derstood by examining Eq.~6.8!: when membrane coupling
is weak (s!1), molecular diffusion can dominateD' even
thoughD'

S!D'
C . The dynamics of weakly coupled mem

branes are simply not characterized by the ‘‘diffusion co
ficient’’ D'

C for the much faster, purely transverse, undu
tion mode.

If membrane coupling is strong (s@1), the baroclinic
modes are of small amplitude and decay rapidly~cf. lattice
vibrations in a solid!, competing efficiently with molecula
diffusion. In this strong-coupling regime, the oblique bar
clinic modes reduceJ(0) by a factor (12A12d)/d as com-
pared to the purely transverseJ'(0). When D'

S!D'
C ,

J(0) is thus one-half of Eq.~8.4!, with D'
S replaced byD'

C

~cf. the lowermost curve in Fig. 11!. ~Note that the limit
s→` cannot be taken without violating the conditionjK
@a, used in deriving Eq.~8.2!, which requires thats
!d/a.!

Figure 12 displays the strong dependence ofJ(0) on
membrane coupling~both static and dynamic effects!. The
coupling parameters5d/jK is varied, whileD'

S andD'
C are

fixed. In the fast-diffusion limit (d51), the static coupling
effect makesJ(0);jK

2 , as predicted by Eq.~8.4!. In the
slow-diffusion limit (d50), the dynamic coupling effect is
also manifested, leading toJ(0);jK

6 , as predicted by Eq
~8.5! for s,1.

FIG. 12. Variation of the adiabatic spectral densityJ(0), calcu-
lated from Eq.~8.2!, with the membrane coupling parameters
5d/jK . The parameter values areN5104, a512, andd as indi-
cated.
-

n

-

-
-

-

B. Spectral density dispersion

To calculate the spectral density functionJ(v) in the gen-
eral case, we start from Eq.~2.23!, inserting the static struc
ture factor Ĥ(q) from Eq. ~4.2! and the~normalized! dy-
namic structure factorS(q,v) from Eqs. ~2.24! and ~6.7!.
Converting the sum in Eq.~2.23! to an integral and introduc
ing reduced variables as in Eq.~6.8!, we obtain

J~v!5
kBT

4pk E drE dz
r

~r21z2!

rVK~r,z!

@r2VK
2 ~r,z!1v2#

,

~8.6!

where we have also defined a wave-vector-dependent p
frequency

FIG. 13. Dispersion of the spectral density functionJ(v), cal-
culated from Eq.~8.6! with a512, s50.25, N5104, p(jK /a)

2

5104, andd as indicated. The plottedJ(v) has been reduced b
kBT/(4pkvK). The dashed line corresponds to the 1/v dispersion
in Eq. ~7.22!.

FIG. 14. Dispersion of the spectral density functionJ(v), cal-
culated from Eq.~8.6! with a512, d51026, N5104, p(jK /a)

2

5p(d/as)25104/s2, and s as indicated. The plottedJ(v) has
been reduced bykBT/(4pkvK

C). The dashed line corresponds
the 1/v dispersion in Eq.~7.22!.
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VK~r,z!5pD'~r,z!/jK
2 . ~8.7!

In the fast-diffusion limit,VK5vK
S , and the double integra

can be performed analytically, yielding Eq.~7.16! when jK
@a, jB!L' , and v!va . In the general case, howeve
analytical efforts do not seem to give useful results. W
therefore resort to numerical integration.

In Fig. 13, we compare theJ(v) dispersions in the fast
and slow-diffusion limits for the same value ofD'

S1D'
C .

Due to the effect of slow baroclinic modes,J(0) is much
larger and the dispersion starts at much lower frequenc
the slow-diffusion limit. As expected, the two dispersio
curves converge at high frequencies. Most interestin
there is a power-law regime,J(v);1/vn with n'1, that
extends to much lower frequencies when diffusion is sl
and baroclinic modes are responsible for the orientatio
fluctuations.

Figure 14 showsJ(v) dispersions for slow diffusion (d
51026) at variable coupling parameters. In the strong-
coupling limit (s@1), the dispersion is much the same as
the fast-diffusion limit, but withD'

S replaced byD'
C . In

particular, we find a 1/v dispersion in the rangevK
C!v

!va , with vK
C5pD'

C/jK
2 . The 1/v dispersion can be ratio

nalized with the aid of Eq.~8.6!, where the two factors in the
integrand correspond toĤ(q) andS(q,v). At a given fre-
quencyv, S(q,v) is dominated by modes withrVK(r,s)
'v. For v@vK

C and for strong coupling~so that VK

'vK
C), these are modes withr@1. Sincez<1, only trans-
r-

em

.

e,

e,

c

c

e

in

,

al

verse modes will then be given significant weight byĤ(q).
The 1/v dispersion is thus produced by purely transve
modes~as if the system were two dimensional! of wave-
lengths shorter thanjK . At lower frequencies (v,vK

C),
J(v) is affected by hydrodynamic interactions, reduci
J(0) by a factor12 ~cf. Sec. VIII A!. Whens→`, Eq. ~6.8!
yieldsVK5vK

C(11z2/r2), showing that oblique modes ca
contribute forv,vK

C .
For sufficiently weak membrane coupling, the 1/v regime

is extended down to the diffusional patch frequencyvK
S ~cf.

the uppermost curve in Fig. 14!. Although D'
S!D'

C , it is
now D'

S that sets the low-frequency cutoff for the 1/v dis-
persion. This happens because weakly coupled membr
fluctuate too slow to compete with molecular diffusio
which then also determinesJ(0) ~cf. Sec. VIII A!. For mod-
erately weak coupling, theJ(v);1/vn dispersion deviates
slightly from the strictly two-dimensional 1/v form: n.1
for v,vK

C whereasn,1 for v.vK
C . For s!1, dynamic

coupling effects are hardly manifested at all andJ(v) is
essentially the same as in the fast-diffusion limit wi
p(jK /a)

25p(d/as)2. ~Note the difference in frequenc
scale between Figs. 10 and 14:vK

C5vK
S/d and d51026

here.!
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